963 resultados para Two-Layer Fluid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inertia-gravity waves exist ubiquitously throughout the stratified parts of the atmosphere and ocean. They are generated by local velocity shears, interactions with topography, and as geostrophic (or spontaneous) adjustment radiation. Relatively little is known about the details of their interaction with the large-scale flow, however. We report on a joint model/laboratory study of a flow in which inertia-gravity waves are generated as spontaneous adjustment radiation by an evolving large-scale mode. We show that their subsequent impact upon the large-scale dynamics is generally small. However, near a potential transition from one large-scale mode to another, in a flow which is simultaneously baroclinically-unstable to more than one mode, the inertia-gravity waves may strongly influence the selection of the mode which actually occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface drag force produced by trapped lee waves and upward propagating waves in non-hydrostatic stratified flow over a mountain ridge is explicitly calculated using linear theory for a two-layer atmosphere with piecewise-constant static stability and wind speed profiles. The behaviour of the drag normalized by its hydrostatic single-layer reference value is investigated as a function of the ratio of the Scorer parameters in the two layers l_2/l_1 and of the corresponding dimensionless interface height l_1 H, for selected values of the dimensionless ridge width l_1 a and ratio of wind speeds in the two layers. When l_2/l_1 → 1, the propagating wave drag approaches 1 in approximately hydrostatic conditions, and the trapped lee wave drag vanishes. As l_2/l_1 decreases, the propagating wave drag progressively displays an oscillatory behaviour with l_1 H, with maxima of increasing magnitude due to constructive interference of reflected waves in the lower layer. The trapped lee wave drag shows localized maxima associated with each resonant trapped lee wave mode, occurring for small l_2/l_1 and slightly higher values of l_1 H than the propagating wave drag maxima. As l1a decreases, i.e. the flow becomes more non-hydrostatic, the propagating wave drag decreases and the regions of non-zero trapped lee wave drag extend to higher l_2/l_1. These results are confirmed by numerical simulations for l_2/l_1 = 0.2. In parameter ranges of meteorological relevance, the trapped lee wave drag may have a magnitude comparable to that of propagating wave drag, and be larger than the reference single-layer drag. This may have implications for drag parametrization in global climate and weather-prediction models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to solve a quasi-geostrophic two-layer model including the variation of static stability is presented. The divergent part of the wind is incorporated by means of an iterative procedure. The procedure is rather fast and the time of computation is only 60–70% longer than for the usual two-layer model. The method of solution is justified by the conservation of the difference between the gross static stability and the kinetic energy. To eliminate the side-boundary conditions the experiments have been performed on a zonal channel model. The investigation falls mainly into three parts: The first part (section 5) contains a discussion of the significance of some physically inconsistent approximations. It is shown that physical inconsistencies are rather serious and for these inconsistent models which were studied the total kinetic energy increased faster than the gross static stability. In the next part (section 6) we are studying the effect of a Jacobian difference operator which conserves the total kinetic energy. The use of this operator in two-layer models will give a slight improvement but probably does not have any practical use in short periodic forecasts. It is also shown that the energy-conservative operator will change the wave-speed in an erroneous way if the wave-number or the grid-length is large in the meridional direction. In the final part (section 7) we investigate the behaviour of baroclinic waves for some different initial states and for two energy-consistent models, one with constant and one with variable static stability. According to the linear theory the waves adjust rather rapidly in such a way that the temperature wave will lag behind the pressure wave independent of the initial configuration. Thus, both models give rise to a baroclinic development even if the initial state is quasi-barotropic. The effect of the variation of static stability is very small, qualitative differences in the development are only observed during the first 12 hours. For an amplifying wave we will get a stabilization over the troughs and an instabilization over the ridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the behavior of a two-dimensional inviscid and incompressible flow when pushed out of dynamical equilibrium. We use the two-dimensional vorticity equation with spectral truncation on a rectangular domain. For a sufficiently large number of degrees of freedom, the equilibrium statistics of the flow can be described through a canonical ensemble with two conserved quantities, energy and enstrophy. To perturb the system out of equilibrium, we change the shape of the domain according to a protocol, which changes the kinetic energy but leaves the enstrophy constant. We interpret this as doing work to the system. Evolving along a forward and its corresponding backward process, we find numerical evidence that the distributions of the work performed satisfy the Crooks relation. We confirm our results by proving the Crooks relation for this system rigorously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rigorous bound is derived which limits the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow within the context of the two-layer model. The bound is valid for conservative (unforced) flow, as well as for forced-dissipative flow that when the dissipation is proportional to the potential vorticity. The method used to derive the bound relies on the existence of a nonlinear Liapunov (normed) stability theorem for subcritical flows, which is a finite-amplitude generalization of the Charney-Stern theorem. For the special case of the Philips model of baroclinic instability, and in the limit of infinitesimal initial nonzonal disturbance amplitude, an improved form of the bound is possible which states that the potential enstrophy of the nonzonal flow cannot exceed ϵβ2, where ϵ = (U − Ucrit)/Ucrit is the (relative) supereriticality. This upper bound turns out to be extremely similar to the maximum predicted by the weakly nonlinear theory. For unforced flow with ϵ < 1, the bound demonstrates that the nonzonal flow cannot contain all of the potential enstrophy in the system; hence in this range of initial supercriticality the total flow must remain, in a certain sense, “close” to a zonal state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general approach based on nonequilibrium thermodynamics for bridging the gap between a well-defined microscopic model and the macroscopic rheology of particle-stabilised interfaces. Our approach is illustrated by starting with a microscopic model of hard ellipsoids confined to a planar surface, which is intended to simply represent a particle-stabilised fluidfluid interface. More complex microscopic models can be readily handled using the methods outlined in this paper. From the aforementioned microscopic starting point, we obtain the macroscopic, constitutive equations using a combination of systematic coarse-graining, computer experiments and Hamiltonian dynamics. Exemplary numerical solutions of the constitutive equations are given for a variety of experimentally relevant flow situations to explore the rheological behaviour of our model. In particular, we calculate the shear and dilatational moduli of the interface over a wide range of surface coverages, ranging from the dilute isotropic regime, to the concentrated nematic regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonance absorption of p-polarized light, incident at angle 6 on a flowing, stratified plasma, is analyzed; profile steepening within (i) a layer around the turning point, and (ii) a thinner,embedded sublayer at the critical surface is taken into account self-consistently. The entire steepened region is taken as collisionless and isothermal. The structure of the main layer shows a variety of regimes, depending on how the flow crosses a sonic point. The structure of the sublayer is also determined; it is entirely subsonic (with no wave breaking) for a well-defined,broad parameter range. Density changes across both layer and sublayer, and fractional absorption, are given in terms of [(wavelength)2 Xintensity/temperature], and (temperature/mec2). The flow outside the double structure is also analyzed for particular conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give conditions that rule out formation of sharp fronts for certain two-dimensional incompressible flows. We show that a necessary condition of having a sharp front is that the flow has to have uncontrolled velocity growth. In the case of the quasi-geostrophic equation and two-dimensional Euler equation, we obtain estimates on the formation of semi-uniform fronts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework, numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found previously. The symmetric phase which has often been predominant in the original model all but disappears for a non-degenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g. attractive suboptimal symmetric phases even for realizable cases and noiseless data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.