800 resultados para Twisted affine superalgebras
Resumo:
This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.
Resumo:
In this thesis, we consider two main subjects: refined, composite invariants and exceptional knot homologies of torus knots. The main technical tools are double affine Hecke algebras ("DAHA") and various insights from topological string theory.
In particular, we define and study the composite DAHA-superpolynomials of torus knots, which depend on pairs of Young diagrams and generalize the composite HOMFLY-PT polynomials from the full HOMFLY-PT skein of the annulus. We also describe a rich structure of differentials that act on homological knot invariants for exceptional groups. These follow from the physics of BPS states and the adjacencies/spectra of singularities associated with Landau-Ginzburg potentials. At the end, we construct two DAHA-hyperpolynomials which are closely related to the Deligne-Gross exceptional series of root systems.
In addition to these main themes, we also provide new results connecting DAHA-Jones polynomials to quantum torus knot invariants for Cartan types A and D, as well as the first appearance of quantum E6 knot invariants in the literature.