110 resultados para Tsunamis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2004 Sumatra-Andaman earthquake was unprecedented in terms of its magnitude (M-w 9.2), rupture length along the plate boundary (1300 km) and size of the resultant tsunami. Since 2004, efforts are being made to improve the understanding of the seismic hazard in the Sumatra-Andaman subduction zone in terms of recurrence patterns of major earthquakes and tsunamis. It is reasonable to assume that previous earthquake events in the Myanmar Andaman segment must be preserved in the geological record in the form of seismo-turbidite sequences. Here we present the prospects of conducting deep ocean palaeoseismicity investigations in order to refine the quantification of the recurrence pattern of large subduction-zone earthquakes along the Andaman-Myanmar arc. Our participation in the Sagar Kanya cruise SK-273 (in June 2010) was to test the efficacy of such a survey. The primary mission of the cruise, along a short length (300 km) of the Sumatra Andaman subduction front was to collect bathymetric data of the ocean floor trenchward of the Andaman Islands. The agenda of our piggyback survey was to fix potential coring sites that might preserve seismo-turbidite deposits. In this article we present the possibilities and challenges of such an exercise and our first-hand experience of such a preliminary survey. This account will help future researchers with similar scientific objectives who would want to survey the deep ocean archives of this region for evidence of extreme events like major earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Geología es la ciencia que estudia la Tierra en su conjunto, su composición, estructura y origen, así como los fenómenos que han tenido lugar en el pasado o que se producen en la actualidad y que han dejado sus huellas en las rocas. Pero, ¿por qué necesita la sociedad a los geólogos? A continuación se citan algunas de las principales razones: - Los geólogos recopilan e interpretan información de la superficie terrestre y del subsuelo, lo que permite establecer la historia pasada del planeta, sus cambios previsibles y su relación con el resto del sistema solar. - La sociedad requiere para su subsistencia recursos naturales (metálicos, no metálicos, hídricos y combustibles fósiles). La labor de los geólogos es determinante para la localización de nuevos yacimientos y para establecer las guías de una explotación y gestión respetuosa con el medio ambiente. - La elaboración de cartografías geológicas permite identificar potenciales zonas de riesgo y acotar distintos usos del suelo; es decir, es esencial para la planificación del territorio y para proponer estrategias de desarrollo sostenible en una región. - La educación en Geología y el buen uso de la información geológica contribuye a salvar vidas y a reducir las pérdidas económicas originadas por catástrofes naturales tales como terremotos, tsunamis, erupciones volcánicas, inundaciones y desprendimientos, así como a desarrollar proyectos de construcción, obras públicas, etc. Con las actividades propuestas se pretende dar a conocer algunos aspectos básicos de distintas especialidades de las Ciencias Geológicas. Para ello se han organizado cuatro sesiones destinadas a realizar una pequeña inmersión en el campo de la Paleontología, la Mineralogía, la Petrología y la Tectónica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geology is the science that studies the Earth, its composition, structure and origin in addition to past and present phenomena that leave their mark on rocks. So why does society need geologists? Some of the main reasons are listed below: - Geologists compile and interpret information about the earth’s surface and subsoil, which allows us to establish the planet’s past history, any foreseeable changes and its relationship with the rest of the solar system. - Society needs natural resources (metals, non-metals, water and fossil fuels) to survive. The work of geologists is therefore a key part of finding new deposits and establishing a guide for exploring and managing resources in an environmentally-friendly way. - The creation of geological maps allows us to identify potential risk areas and survey different land uses; in other words, they make an essential contribution to land planning and proposing sustainable development strategies in a region. - Learning about Geology and the proper use of geological information contributes to saving lives and reducing financial loss caused by natural catastrophes such as earthquakes, tsunamis, volcanic eruptions, flooding and landslides, while also helping to develop construction projects, public works, etc. Through the proposed activities we aim to explain some of the basic elements of the different specialities within the field of Geological Sciences. In order to do this, four sessions have been organised that will allow for a quick insight into the fields of Palaeontology, Mineralogy, Petrology and Tectonics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fishing communities around the Indian Ocean were severely affected by the December 2004 tsunamis. Programs for rebuilding coastal fisheries livelihoods need to address the pre-tsunami situation that was characterized by overfishing and degraded natural resources. Adopting appropriate strategies to ensure sustainable livelihoods will require community involvement, as well as cross-sectoral, integrated planning and management at ascending government levels. Key recommendations from the WorldFish Center study Sustainable Management of Coastal Fish Stocks in Asia are presented to encourage discussion and debate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fishing communities around the Indian Ocean were severely affected by the December 2004 tsunamis. Programs for rebuilding coastal fisheries livelihoods need to address the pre-tsunami situation that was characterized by overfishing and degraded natural resources. Adopting appropriate strategies to ensure sustainable livelihoods will require community involvement, as well as cross-sectoral, integrated planning and management at ascending government levels. Key recommendations from the WorldFish Center study Sustainable Management of Coastal Fish Stocks in Asia are presented to encourage discussion and debate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax-Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands. © 2012 American Society of Mechanical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geological profile of many submerged slopes on the continental shelf consists of normally to lightly overconsolidated clays with depths ranging from a few meters to hundreds of meters. For these soils, earthquake loading can generate significant excess pore water pressures at depth, which can bring the slope to a state of instability during the event or at a later time as a result of pore pressure redistribution within the soil profile. Seismic triggering mechanisms of landslide initiation for these soils are analyzed with the use of a new simplified model for clays which predicts realistic variations of the stress-strain-strength relationships as well as pore pressure generation during dynamic loading in simple shear. The proposed model is implemented in a finite element program to analyze the seismic response of submarine slopes. These analyses provide an assessment of the critical depth and estimated displacements of the mobilized materials and thus are important components for the estimation of submarine landslide-induced tsunamis. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal and surface waves generated by the deformations of the solid bed in a two layer fluid system of infinite lateral extent and uniform depth are investigated. An integral solution is developed for an arbitrary bed displacement on the basis of a linear approximation of the complete description of wave motion using a transform method (Laplace in time and Fourier in space) analogous to that used to study the generation of tsunamis by many researchers. The theoretical solutions are presented for three interesting specific deformations of the seafloor; the spatial variation of each seafloor displacement consists of a block section of the seafloor moving vertically either up or down while the time-displacement history of the block section is varied. The generation process and the profiles of the internal and surface waves for the case of the exponential bed movement are numerically illustrated, and the effects of the deformation parameters, densities and depths of the two layers on the solutions are discussed. As expected, the solutions derived from the present work include as special cases that obtained by Kervella et al. [Theor Comput Fluid Dyn 21:245-269, 2007] for tsunamis cased by an instantaneous seabed deformation and those presented by Hammack [J Fluid Mech 60:769-799, 1973] for the exponential and the half-sine bed displacements when the density of the upper fluid is taken as zero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Without human beings, and human activities, hazards can strike but disasters cannot occur, they are not just natural phenomena but a social event (Van Der Zon, 2005). The rapid demand for reconstruction after disastrous events can result in the impacts of projects not being carefully considered from the outset and the opportunity to improve long-term physical and social community structures being neglected. The events that struck Banda Aceh in 2004 have been described as
a story of ‘two tsunamis’, the first being the natural hazard that struck and the second being the destruction of social structures that occurred as a result of unplanned, unregulated and uncoordinated response (Syukrizal et al, 2009). Measures must be in place to ensure that, while aiming to meet reconstruction
needs as rapidly as possible, the risk of re-occurring disaster impacts are reduced through both the physical structures and the capacity of the community who inhabit them. The paper explores issues facing reconstruction in a post-disaster scenario, drawing on the connections between physical and social reconstruction in order to address long term recovery solutions. It draws on a study of relevant literature and a six week pilot study spent in Haiti exploring the progress of recovery in the Haitian capital and the limitations still restricting reconstruction efforts. The study highlights the need for recovery management strategies that recognise the link between social and physical reconstruction and the significance of community based initiatives that see local residents driving recovery in terms of debris handling and rebuilding. It demonstrates how a community driven approach to physical reconstruction could also address the social impacts of events that, in the case of places such as Haiti, are still dramatically restricting recovery efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento (co-tutela), Geologia (Geodinâmica Interna), Faculdade de Ciências da Universidade de Lisboa, Faculté des Sciences D’Orsay-Université Paris-Sud, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 444

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.