988 resultados para Tropical cyclones


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Records of Atlantic basin tropical cyclones (TCs) since the late nineteenth century indicate a very large upward trend in storm frequency. This increase in documented TCs has been previously interpreted as resulting from anthropogenic climate change. However, improvements in observing and recording practices provide an alternative interpretation for these changes: recent studies suggest that the number of potentially missed TCs is sufficient to explain a large part of the recorded increase in TC counts. This study explores the influence of another factor—TC duration—on observed changes in TC frequency, using a widely used Atlantic hurricane database (HURDAT). It is found that the occurrence of short-lived storms (duration of 2 days or less) in the database has increased dramatically, from less than one per year in the late nineteenth–early twentieth century to about five per year since about 2000, while medium- to long-lived storms have increased little, if at all. Thus, the previously documented increase in total TC frequency since the late nineteenth century in the database is primarily due to an increase in very short-lived TCs. The authors also undertake a sampling study based upon the distribution of ship observations, which provides quantitative estimates of the frequency of missed TCs, focusing just on the moderate to long-lived systems with durations exceeding 2 days in the raw HURDAT. Upon adding the estimated numbers of missed TCs, the time series of moderate to long-lived Atlantic TCs show substantial multidecadal variability, but neither time series exhibits a significant trend since the late nineteenth century, with a nominal decrease in the adjusted time series. Thus, to understand the source of the century-scale increase in Atlantic TC counts in HURDAT, one must explain the relatively monotonic increase in very short-duration storms since the late nineteenth century. While it is possible that the recorded increase in short-duration TCs represents a real climate signal, the authors consider that it is more plausible that the increase arises primarily from improvements in the quantity and quality of observations, along with enhanced interpretation techniques. These have allowed National Hurricane Center forecasters to better monitor and detect initial TC formation, and thus incorporate increasing numbers of very short-lived systems into the TC database.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The two-way relationship between Rossby Wave-Breaking (RWB) and intensification of extra tropical cyclones is analysed over the Euro-Atlantic sector. In particular, the timing, intensity and location of cyclone development are related to RWB occurrences. For this purpose, two potential-temperature based indices are used to detect and classify anticyclonic and cyclonic RWB episodes from ERA-40 Re-Analysis data. Results show that explosive cyclogenesis over the North Atlantic (NA) is fostered by enhanced occurrence of RWB on days prior to the cyclone’s maximum intensification. Under such conditions, the eddy-driven jet stream is accelerated over the NA, thus enhancing conditions for cyclogenesis. For explosive cyclogenesis over the eastern NA, enhanced cyclonic RWB over eastern Greenland and anticyclonic RWB over the sub-tropical NA are observed. Typically only one of these is present in any given case, with the RWB over eastern Greenland being more frequent than its southern counterpart. This leads to an intensification of the jet over the eastern NA and enhanced probability of windstorms reaching Western Europe. Explosive cyclones evolving under simultaneous RWB on both sides of the jet feature a higher mean intensity and deepening rates than cyclones preceded by a single RWB event. Explosive developments over the western NA are typically linked to a single area of enhanced cyclonic RWB over western Greenland. Here, the eddy-driven jet is accelerated over the western NA. Enhanced occurrence of cyclonic RWB over southern Greenland and anticyclonic RWB over Europe is also observed after explosive cyclogenesis, potentially leading to the onset of Scandinavian Blocking. However, only very intense developments have a considerable influence on the large-scale atmospheric flow. Non-explosive cyclones depict no sign of enhanced RWB over the whole NA area. We conclude that the links between RWB and cyclogenesis over the Euro-Atlantic sector are sensitive to the cyclone’s maximum intensity, deepening rate and location.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forecasts of precipitation and water vapor made by the Met Office global numerical weather prediction (NWP) model are evaluated using products from satellite observations by the Special Sensor Microwave Imager/Sounder (SSMIS) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) for June–September 2011, with a focus on tropical areas (308S–308N). Consistent with previous studies, the predicted diurnal cycle of precipitation peaks too early (by ;3 h) and the amplitude is too strong over both tropical ocean and land regions. Most of the wet and dry precipitation biases, particularly those over land, can be explained by the diurnal-cycle discrepancies. An overall wet bias over the equatorial Pacific and Indian Oceans and a dry bias over the western Pacific warmpool and India are linked with similar biases in the climate model, which shares common parameterizations with the NWP version. Whereas precipitation biases develop within hours in the NWP model, underestimates in water vapor (which are assimilated by the NWP model) evolve over the first few days of the forecast. The NWP simulations are able to capture observed daily-to-intraseasonal variability in water vapor and precipitation, including fluctuations associated with tropical cyclones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in US landfalling systems. Here we present a tentative study, which examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1° to 0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and sub-tropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity and power dissipation index in each cluster are documented for both configurations. Our results show that except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. We also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, we examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study has explored the prediction errors of tropical cyclones (TCs) in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) for the Northern Hemisphere summer period for five recent years. Results for the EPS are contrasted with those for the higher-resolution deterministic forecasts. Various metrics of location and intensity errors are considered and contrasted for verification based on IBTrACS and the numerical weather prediction (NWP) analysis (NWPa). Motivated by the aim of exploring extended TC life cycles, location and intensity measures are introduced based on lower-tropospheric vorticity, which is contrasted with traditional verification metrics. Results show that location errors are almost identical when verified against IBTrACS or the NWPa. However, intensity in the form of the mean sea level pressure (MSLP) minima and 10-m wind speed maxima is significantly underpredicted relative to IBTrACS. Using the NWPa for verification results in much better consistency between the different intensity error metrics and indicates that the lower-tropospheric vorticity provides a good indication of vortex strength, with error results showing similar relationships to those based on MSLP and 10-m wind speeds for the different forecast types. The interannual variation in forecast errors are discussed in relation to changes in the forecast and NWPa system and variations in forecast errors between different ocean basins are discussed in terms of the propagation characteristics of the TCs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intense extra-tropical cyclones are often associated with strong winds, heavy precipitation and socio-economic impacts. Over southwestern Europe, such storms occur less often, but still cause high economic losses. We characterise the largescale atmospheric conditions and cyclone tracks during the top-100 potential losses over Iberia associated with wind events. Based on 65 years of reanalysis data,events are classified into four groups: (i) cyclone tracks crossing over Iberia on the event day (“Iberia”), (ii) cyclones crossing further north, typically southwest of the British Isles (“North”), (iii) cyclones crossing southwest to northeast near the northwest tip of Iberia (“West”), and (iv) so called “Hybrids”, characterised by a strong pressure gradient over Iberia due to the juxtaposition of low and high pressure centres. Generally, “Iberia” events are the most frequent (31% to 45% for top-100 vs.top-20), while “West” events are rare (10% to 12%). 70% of the events were primarily associated with a cyclone. Multi-decadal variability in the number of events is identified. While the peak in recent years is quite prominent, other comparably stormy periods occurred in the 1960s and 1980s. This study documents that damaging wind storms over Iberia are not rare events, and their frequency of occurrence undergoes strong multi-decadal variability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical cyclogenesis is generally considered to occur in regions devoid of baroclinic structures; however, an appreciable number of tropical cyclones (TCs) form in baroclinic environments each year. A global climatology of these baroclinically influenced TC developments is presented in this study. An objective classification strategy is developed that focuses on the characteristics of the environmental state rather than on properties of the vortex, thus allowing for a pointwise “development pathway” classification of reanalysis data. The resulting climatology shows that variability within basins arises primarily as a result of local surface thermal contrasts and the positions of time-mean features on the subtropical tropopause. The pathway analyses are sampled to generate a global climatology of 1948–2010 TC developments classified by baroclinic influence: nonbaroclinic (70%), low-level baroclinic (9%), trough induced (5%), weak tropical transition (11%), and strong tropical transition (5%). All basins other than the North Atlantic are dominated by nonbaroclinic events; however, there is extensive interbasin variability in secondary development pathways. Within each basin, subregions and time periods are identified in which the relative importance of the development pathways also differs. The efficiency of tropical cyclogenesis is found to be highly dependent on development pathway. The peak efficiency defined in the classification subspace straddles the nonbaroclinic/trough-induced boundary, suggesting that the optimal environment for TC development includes a baroclinic contribution from an upper-level disturbance. By assessing the global distribution of baroclinically influenced TC formations, this study identifies regions and pathways whose further study could yield improvements in our understanding of this important subset of TC developments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical cyclones are considered as the most severe natural disasters in Bangladesh; they cause extensive damage, create losses in the country׳s economy, and affect social settings. The impact of natural disasters has been further intensified due to various vulnerability factors within the Bangladeshi community such as low income; shortages of food; lack of assets such as land and permanent housing; dense population, illiteracy. This study evaluates the vulnerability factors for cyclones in the community based in the Patuakhali region of south western Bangladesh. The bottom-up research approach was adopted for the study, whereby the local community was consulted for their viewpoints by using focus group interviews and semi-structured interviews. Different community groups and social categories including both men and women, from different age groups and livelihoods, participated in the study. The study revealed how the community׳s vulnerability to cyclones has been further aggravated by socio-economic factors such as social status, political influences and economic conditions. The majority of the community in Patuakhali has been “knowingly” vulnerable to cyclone disaster as a result of the lack of alternatives especially in terms of their livelihood patterns. The vulnerability of women, due to their lack of authority, domestic work, and fear of exposure within the society was also highlighted. The study revealed how vulnerability factors are interlinked with each other making them further difficult to manage. This calls for multi-faceted disaster risk reduction strategies that targets vulnerability factors deriving from different origins and root causes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical cyclones are considered as the most severe natural disasters in Bangladesh; they cause extensive damage, create losses in the country[U+05F3]s economy, and affect social settings. The impact of natural disasters has been further intensified due to various vulnerability factors within the Bangladeshi community such as low income; shortages of food; lack of assets such as land and permanent housing; dense population, illiteracy. This study evaluates the vulnerability factors for cyclones in the community based in the Patuakhali region of south western Bangladesh. The bottom-up research approach was adopted for the study, whereby the local community was consulted for their viewpoints by using focus group interviews and semi-structured interviews. Different community groups and social categories including both men and women, from different age groups and livelihoods, participated in the study. The study revealed how the community[U+05F3]s vulnerability to cyclones has been further aggravated by socio-economic factors such as social status, political influences and economic conditions. The majority of the community in Patuakhali has been "knowingly" vulnerable to cyclone disaster as a result of the lack of alternatives especially in terms of their livelihood patterns. The vulnerability of women, due to their lack of authority, domestic work, and fear of exposure within the society was also highlighted. The study revealed how vulnerability factors are interlinked with each other making them further difficult to manage. This calls for multi-faceted disaster risk reduction strategies that targets vulnerability factors deriving from different origins and root causes. © 2014 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. ^ Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. ^ Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hurricanes are one of the deadliest and costliest natural hazards affecting the Gulf coast and Atlantic coast areas of the United States. An effective way to minimize hurricane damage is to strengthen structures and buildings. The investigation of surface level hurricane wind behavior and the resultant wind loads on structures is aimed at providing structural engineers with information on hurricane wind characteristics required for the design of safe structures. Information on mean wind profiles, gust factors, turbulence intensity, integral scale, and turbulence spectra and co-spectra is essential for developing realistic models of wind pressure and wind loads on structures. The research performed for this study was motivated by the fact that considerably fewer data and validated models are available for tropical than for extratropical storms. Using the surface wind measurements collected by the Florida Coastal Monitoring Program (FCMP) during hurricane passages over coastal areas, this study presents comparisons of surface roughness length estimates obtained by using several estimation methods, and estimates of the mean wind and turbulence structure of hurricane winds over coastal areas under neutral stratification conditions. In addition, a program has been developed and tested to systematically analyze Wall of Wind (WoW) data, that will make it possible to perform analyses of baseline characteristics of flow obtained in the WoW. This program can be used in future research to compare WoW data with FCMP data, as gust and turbulence generator systems and other flow management devices will be used to create WoW flows that match as closely as possible real hurricane wind conditions. Hurricanes are defined as tropical cyclones for which the maximum 1-minute sustained surface wind speeds exceed 74 mph. FCMP data include data for tropical cyclones with lower sustained speeds. However, for the winds analyzed in this study the speeds were sufficiently high to assure that neutral stratification prevailed. This assures that the characteristics of those winds are similar to those prevailing in hurricanes. For this reason in this study the terms tropical cyclones and hurricanes are used interchangeably.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most Australian banana production occurs on the north-eastern tropical coast between latitudes 15-18°S, and can experience summer cyclone activity. Damage from severe tropical cyclones has serious impact on banana-based livelihoods. The most significant impacts include immediate loss of production and income for several months, the region-wide synchronization of cropping and the expense of rehabilitating affected plantations. Severe tropical cyclones have directly affected the main production region twice in recent years Tropical Cyclone (TC) Larry (Category 4) in March 2006 and TC Yasi (Category 5) in February 2011. Based on TC Larry experiences, pre- and post-cyclone farm practices were developed to reduce these impacts in future cyclonic events. The main pre-cyclone farm practice focused on maintaining production units and an earlier return to fruit production by partially or completely removing the plant canopy to reduce wind resistance. Post-cyclone farm practices focused on managing the industry-wide crop synchronization using crop timing techniques to achieve a staggered return to cropping by scheduling production to provide continuous fruit supply. With TC Yasi in 2011, some banana producers implemented these practices, allowing them to examine their effectiveness in reducing cyclonic impacts. Additional research and development activities were conducted to refine our understanding of their effectiveness and improve their application for future cyclonic events. Based on these activities and farm-based observations, suggested practice-based management strategies can be developed to help reduce the impact of severe tropical cyclones in the future. Canopy removal maintained banana plants as productive units, and provided earlier but smaller bunches, generating earlier-than-expected income. Queensland producers expressed willingness to adopt canopy removal for future cyclone threats where appropriate, despite its labor-intensiveness. Mechanization would allow larger scale adoption. Implementing a staggered cropping program successfully achieved a consistent, continuous fruit supply after a cyclone impact. Both techniques should be applicable to other cyclone-prone regions.