992 resultados para Tropical Rain-forest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lianas play a key role in forest structure, species diversity, as well as functional aspects of tropical forests. Although the study of lianas in the tropics has increased dramatically in recent years, basic information on liana communities for the Brazilian Atlantic Forest is still scarce. To understand general patterns of liana abundance and biomass along an elevational gradient (0-1,100 m asl) of coastal Atlantic Forest, we carried out a standard census for lianas a parts per thousand yen1 cm in five 1-ha plots distributed across different forest sites. On average, we found a twofold variation in liana abundance and biomass between lowland and other forest types. Large lianas (a parts per thousand yen10 cm) accounted for 26-35% of total liana biomass at lower elevations, but they were not recorded in montane forests. Although the abundance of lianas displayed strong spatial structure at short distances, the present local forest structure played a minor role structuring liana communities at the scale of 0.01 ha. Compared to similar moist and wet Neotropical forests, lianas are slightly less abundant in the Atlantic Forest, but the total biomass is similar. Our study highlights two important points: (1) despite some studies have shown the importance of small-scale canopy disturbance and support availability, the spatial scale of the relationships between lianas and forest structure can vary greatly among tropical forests; (2) our results add to the evidence that past canopy disturbance levels and minimum temperature variation exert influence on the structure of liana communities in tropical moist forests, particularly along short and steep elevational gradients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions What are the main features of the seed rain in a fragmented Atlantic forest landscape? Can seed rain species attributes (life form, dispersal mode, successional status) relate to the spatial arrangement (size and number of fragments, edge density and presence of corridor) of forest fragments in the landscape? How does the rain forest landscape structure affect the seed rain? Location Atlantic rainforest, Sao Paulo State, Southeastern Brazil. Methods Seed rain samples were collected monthly throughout 1yr, counted, identified and classified according to species dispersal mode, successional status and life form. Seed rain composition was compared with woody species near the seed traps. Relationships between seed rain composition and landscape spatial arrangement (fragment area, presence of corridor, number of fragments in the surroundings, proximity of fragments, and edge density) were tested using canonical correspondence analysis (CCA). Results We collected 20142 seeds belonging to 115 taxa, most of them early successional and anemochorous trees. In general, the seed rain had a species composition distinct from that of the nearby forest tree community. Small isolated fragments contained more seeds, mainly of anemochorous, epiphytic and early-successional species; large fragments showed higher association with zoochorous and late-successional species compared to small fragments. The CCA significantly distinguished the species dispersal mode according to fragment size and isolation, anemochorous species being associated to small and isolated fragments, and zoochorous species to larger areas and fragment aggregation. Nevertheless, a gradient driven by proximity (PROX) and edge density (ED) segregated lianas (in the positive extremity), early successional and epiphyte species (in the negative end); large fragments were positively associated to PROX and ED. Conclusions The results highlight the importance of the size and spatial arrangement of forest patches to promote habitat connectivity and improve the flux of animal-dispersed seeds. Landscape structure controls seed fluxes and affects plant dispersal capacity, potentially influencing the composition and structure of forest fragments. The seed rain composition may be used to assess the effects of landscape spatial structure on plant assemblages, and provide relevant information for biodiversity conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful conservation of tropical montane forest, one of the most threatened ecosystems on earth, requires detailed knowledge of its biogeochemistry. Of particular interest is the response of the biogeochemical element cycles to external influences such as element deposition or climate change. Therefore the overall objective of my study was to contribute to improved understanding of role and functioning of the Andean tropical montane forest. In detail, my objectives were to determine (1) the role of long-range transported aerosols and their transport mechanisms, and (2) the role of short-term extreme climatic events for the element budget of Andean tropical forest. In a whole-catchment approach including three 8-13 ha microcatchments under tropical montane forest on the east-exposed slope of the eastern cordillera in the south Ecuadorian Andes at 1850-2200 m above sea level I monitored at least in weekly resolution the concentrations and fluxes of Ca, Mg, Na, K, NO3-N, NH4-N, DON, P, S, TOC, Mn, and Al in bulk deposition, throughfall, litter leachate, soil solution at the 0.15 and 0.3 m depths, and runoff between May 1998 and April 2003. I also used meteorological data from my study area collected by cooperating researchers and the Brazilian meteorological service (INPE), as well as remote sensing products of the North American and European space agencies NASA and ESA. My results show that (1) there was a strong interannual variation in deposition of Ca [4.4-29 kg ha-1 a-1], Mg [1.6-12], and K [9.8-30]) between 1998 and 2003. High deposition changed the Ca and Mg budgets of the catchments from loss to retention, suggesting that the additionally available Ca and Mg was used by the ecosystem. Increased base metal deposition was related to dust outbursts of the Sahara and an Amazonian precipitation pattern with trans-regional dry spells allowing for dust transport to the Andes. The increased base metal deposition coincided with a strong La Niña event in 1999/2000. There were also significantly elevated H+, N, and Mn depositions during the annual biomass burning period in the Amazon basin. Elevated H+ deposition during the biomass burning period caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. Nitrogen was only retained during biomass burning but not during non-fire conditions when deposition was much smaller. Therefore biomass burning-related aerosol emissions in Amazonia seem large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base-metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened ENSO cycle because of global warming likely enhances the acid deposition at my study forest. (2) Storm events causing near-surface water flow through C- and nutrient-rich topsoil during rainstorms were the major export pathway for C, N, Al, and Mn (contributing >50% to the total export of these elements). Near-surface flow also accounted for one third of total base metal export. This demonstrates that storm-event related near-surface flow markedly affects the cycling of many nutrients in steep tropical montane forests. Changes in the rainfall regime possibly associated with global climate change will therefore also change element export from the study forest. Element budgets of Andean tropical montane rain forest proved to be markedly affected by long-range transport of Saharan dust, biomass burning-related aerosols, or strong rainfalls during storm events. Thus, increased acid and nutrient deposition and the global climate change probably drive the tropical montane forest to another state with unknown consequences for its functions and biological diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In groves of ectomycorrhizal caesalpiniaceous species in the Atlantic coastal forest of Central Africa the dominant tree Microberlinia bisulcata, which is shade-intolerant as a seedling but highly light-responding as a sapling, shows very limited regeneration. M. bisulcata saplings were mapped in an 82.5-ha plot at Korup and found to be located significantly far (>40 m) away from adults, a result confirmed by direct testing in a second 56-ha plot. Sapling growth over 6 years, the distribution of newly emerging seedlings around adults, recruitment of saplings in a large opening and the outward extent of seedlings at the grove edge were also investigated. Two processes appear to have been operating: (1) a very strong and consistent restriction of the very numerous seedlings establishing after masting close to adults, and (2) a strong but highly spatially variable promotion of distant survivors by increased light from the deaths of large trees of species other than M. bisulcata (which itself has very low mortality rate). This leads to an apparent escape-from-adults effect. To maintain saplings in the shade between multiple short periods of release ectomycorrhizal connections to other co-occurring caesalp species may enable a rachet-type mechanism. The recorded sapling dynamics currently contribute an essential part of the long-term cycling of the groves. M. bisulcata is an interesting example of an important group of tropical trees, particularly in Africa, which are both highly light-demanding when young yet capable also of forming very large forest emergents. To more comprehensively explain tropical tree responses, the case is made for adding a new dimension to the trade-off concept of early tree light-response versus adult longevity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Where one or a few tree species reach local high abundance, different ecological factors may variously facilitate or hinder their regeneration. Plant pathogens are thought to be one of those possible agents which drive intraspecific density-dependent mortality of tree seedlings in tropical forests. Experimental evidence for this is scarce, however. In an African rain forest at Korup, we manipulated the density of recently established seedlings (~5–8 wk old; low vs. high-density) of two dominant species of contrasting recruitment potential, and altered their exposure to pathogens using a broad-spectrum fungicide. Seedling mortality of the abundantly recruiting subcanopy tree Oubanguia alata was strongly density-dependent after 7 mo, yet fungicide-treated seedlings had slightly higher mortality than controls. By contrast, seedling mortality of the poorly recruiting large canopy-emergent tree Microberlinia bisulcata was unaffected by density or fungicide. Ectomycorrhizal colonization of M. bisulcata was not affected by density or fungicide either. For O. alata, adverse effects of fungicide on its vesicular arbuscular mycorrhizas may have offset any possible benefit of pathogen removal. We tentatively conclude that fungal pathogens are not a likely major cause of density dependence in O. alata, or of early post-establishment mortality in M. bisulcata. They do not explain the latter's currently very low recruitment rate at Korup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. •  At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995–2000. The series was extended to 1988–2004 with less detailed data. Individual transitions in phenology were analysed. •  Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. •  Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An ‘alternative bearing’ system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tree recruitment is determined in part by the survivorship and growth of seedlings. Two seedling cohorts of the three most abundant caesalpiniaceous species forming groves at Korup, Cameroon, were followed from 1995/1997 to 2002, to investigate why Microberlinia bisulcata, the most abundant species, currently has very few recruits compared with Tetraberlinia korupensis and T. bifoliolata. Numbers of seedlings dying, and the heights and leaf numbers of survivors, were recorded on 30 occasions. Survivorship after 2.5 y was 30% for M. bisulcata and 59% for the similar Tetraberlinia spp. together. After 7 y the corresponding values were 4 and 21%. Growth of all species was slow for the first 4 y; but survivors of T. korupensis became 63% taller, as the other species stagnated, by 7 y. The poor recruitment of M. bisulcata was the result of its very low seedling survival. Within species, the tallest seedlings of M. bisulcata and T. bifoliolata, but medium-height ones of T. korupensis, survived longest. This was likely due to higher root allocation in T. korupensis. Seedling dynamics of M. bisulcata and T. korupensis over 7 y accorded well with relative abundances of adult trees; T. bifoliolata is predicted to recruit later.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buttressing is a trait special to tropical trees but explanations for its occurrence remain inconclusive. The two main hypotheses are that they provide structural support and/or promote nutrient acquisition. Studies of the first are common but the second has received much less attention. Architectural measurements were made on adult and juvenile trees of the ectomycorrhizal species Microberlinia bisulcata, in Korup (Cameroon). Buttressing on this species is highly distinctive with strong lateral extension of surface roots of the juveniles leading to a mature buttress system of a shallow spreading form on adults. This contrasts with more vertical buttresses, closer to the stem, found on many other tropical tree species. No clear relationship between main buttress and large branch distribution was found. Whilst this does not argue against the essential structural role of buttresses for these very large tropical trees, the form on M. bisulcata does suggest a likely second role, that of aiding nutrient acquisition. At the Korup site, with its deep sandy soils of very low phosphorus status, and where most nutrient cycling takes place in a thin surface layer of fine roots and mycorrhizas, it appears that buttress form could develop from soil-surface root exploration for nutrients by juvenile trees. It may accordingly allow M. bisulcata to attain the higher greater competitive ability, faster growth rate, and maximum tree size that it does compared with other co-occurring tree species. For sites across the tropics in general, the degree of shallowness and spatial extension of buttresses of the dominant species is hypothesized to increase with decreasing nutrient availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 272-ha grove of dominant Microberlinia bisulcata (Caesalpinioideae) adult trees greater than or equal to 50 cm stem diameter was mapped in its entirety in the southern part of Korup National Park, Cameroon. The approach used an earlier-established 82.5-ha permanent plot with a new surrounding 50-m grid of transect lines. Tree diameters were available from the plot but trees on the grid were recorded as being greater than or equal to 50 cm. The grove consisted of 1028 trees in 2000. Other species occurred within the grove. including the associated subdominants Tetraberlinia bifoliolata and T. korupensis. Microberlinia bisulcata becomes adult at a stein diameter of c. 50 cm and at an estimated age of 50 y. Three oval-shaped subgroves with dimensions c. 8 50 in x 13 50 in (90 ha) were defined. For two of them (within the plot) tree diameters were available. Subgroves differed in their scales and intensities of spatial tree patterns, and in their size frequency distributions, these suggesting differing past dynamics. The modal scale of clumping was 40-50 m. Seed dispersal by pod ejection (to c. 50 in) was evident from the semi-circles of trees at the grove's edge and from the many internal circles (100-200 m diameter). The grove has the capacity. therefore, to increase at c. 100 m per century. To form its present extent and structure. it is inferred that it expanded and infilled from a possibly smaller area of lower adult-tree density. This possibly happened in three waves of recruitment, each one determined by a period of several intense disturbances. Climate records for Africa show that 1740-50 and 1820-30 were periods of drought, and that 1870-1895 was also regionally very dry. Canopy openings allow the light-demanding and fast-growing ectomycorrhizal M. bisulcata to establish, but successive releases are thought to be required to achieve effective recruitment. Nevertheless, in the last 50 y there were no major events and recruitment in the grove was very poor. This present study leads to a new hypothesis of the role of periods of multiple extreme events being the driving factor for the population dynamics of many large African tree species such as M. bisulcata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha(-1), and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha-1 respectively. The value for K is high for tropical forests and that for N is low. Nitrogen showed a significantly lower loading of throughfall and stemflow in HEM than in LEM forest, this being associated in the HEM forest with a greater abundance of epiphytic bryophytes which may absorb more N. Incident rainfall provided c. 35% of the gross input of P to the forest floor (i. e., rain-based plus small litter inputs), a surprisingly high contribution given the sandy P-poor soils. At the start of the wet season leaching of K from the canopy was particularly high. Calcium in the rain was also highest at this time, most likely due to washing off of dry-deposited Harmattan dusts. It is proposed that throughfall has an important `priming' function in the rapid decomposition of litter and mineralization of P at the start of the wet season. The contribution of P inputted from the atmosphere appears to be significant when compared to the rates of P mineralization from leaf litter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Although plants can reduce the impacts of herbivory in multiple ways, these defensive traits are often studied in isolation and an understanding of the resulting strategies is incomplete. * In the study reported here, empirical evidence was simultaneously evaluated for the three main sets of traits available to plants: (i) resistance through constitutive leaf traits, (ii) tolerance to defoliation and (iii) escape in space, for three caesalpiniaceous tree species Microberlinia bisulcata, Tetraberlinia bifoliolata and T. korupensis, which co-dominate groves within the lowland primary rain forest of Korup National Park (Cameroon). * Mesh cages were placed around individual wild seedlings to exclude insect herbivores at 41 paired canopy gap and understorey locations. After following seedling growth and survival for c. 2 years, caged and control treatments were removed, leaves harvested to determine nutrient and phenolic concentrations, leaf mass per area estimated, and seedling performance in gaps followed for a further c. 2 years to quantify tolerance to the leaf harvesting. * The more nutrient-rich leaves of the weakly shade-tolerant M. bisulcata were damaged much more in gaps than the two strongly shade-tolerant Tetraberlinia species, which had higher leaf mass per area and concentrations of total phenols. Conversely, the faster-growing M. bisulcata was better able to tolerate defoliation in terms of height growth (reflushing capacity), but not at maintaining overall leaf numbers, than the other two species. * Across gaps, insect-mediated Janzen–Connell effects were most pronounced for M. bisulcata, less so for T. korupensis, and not detectable for T. bifoliolata. The three species differed distinctly in their secondary metabolic profiles. * Taken together, the results suggested a conceptual framework linking the three sets of traits, one in which the three co-dominant species adopt different strategies towards herbivore pressure depending on their different responses to light availability. This study is one of the first in a natural forest ecosystem to examine resistance to, tolerance of, and escape from herbivory among a group of co-occurring tropical tree species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the relationship between flower size and nectar properties of hummingbird-visited flowers in the Brazilian Atlantic Forest. We analysed the nectar volume and concentration as a function of corolla length and the average bill size of visitors for 150 plant species, using the phylogenetic generalized least squares (PGLS) to control for phylogenetic signals in the data. We found that nectar volume is positively correlated with corolla length due to phylogenetic allometry. We also demonstrated that larger flowers provide better rewards for long-billed hummingbirds. Regardless of the causal mechanisms, our results support the hypothesis that morphological floral traits that drive partitioning among hummingbirds correspond to the quantity of resources produced by the flowers in the Atlantic Forest. We demonstrate that the relationship between nectar properties and flower size is affected by phylogenetic constraints and thus future studies assessing the interaction between floral traits need to control for phylogenetic signals in the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to evaluate the floristic composition, richness, and diversity of the upper and lower strata of a stretch of mixed rain forest near the city of Itaberá, in southeastern Brazil. We also investigated the differences between this conservation area and other stretches of mixed rain forest in southern and southeastern Brazil, as well as other nearby forest formations, in terms of their floristic relationships. For our survey of the upper stratum (diameter at breast height [DBH] > 15 cm), we established 50 permanent plots of 10 × 20 m. Within each of those plots, we designated five, randomly located, 1 × 1 m subplots, in order to survey the lower stratum (total height > 30 cm and DBH < 15 cm). In the upper stratum, we sampled 1429 trees and shrubs, belonging to 134 species, 93 genera, and 47 families. In the lower stratum, we sampled 758 trees and shrubs, belonging to 93 species, 66 genera, and 39 families. In our floristic and phytosociological surveys, we recorded 177 species, belonging to 106 genera and 52 families. The Shannon Diversity Index was 4.12 and 3.5 for the upper and lower strata, respectively. Cluster analysis indicated that nearby forest formations had the strongest floristic influence on the study area, which was therefore distinct from other mixed rain forests in southern Brazil and in the Serra da Mantiqueira mountain range.