903 resultados para Trophic guilds
Resumo:
Using a 10-yr time-series data set, we analyzed the effects of two severe droughts on water-quality and ecosystem processes in a temperate, eutrophic estuary (Neuse River Estuary, North Carolina). During the droughts, dissolved inorganic nitrogen concentrations were on average 46–68% lower than the long-term mean due to reduced riverine input. Phytoplankton productivity and biomass were slightly below average for most of the estuary during a spring–autumn drought in 2002, but were dramatically lower than average throughout the estuary during an autumn–winter drought in 2007–2008. Droughts affected upper trophic levels through alteration of both habitat condition (i.e., bottom-water dissolved oxygen levels) and food availability. Bottomwater dissolved oxygen levels were near or slightly above average during the 2002 drought and during summer 2007. Concomitant with these modest improvements in bottom-water oxygen condition, fish kills were greatly reduced relative to the long-term average. Low-oxygen bottom-water conditions were more pronounced during summer 2008 in the latter stages of the 2007–2008 drought, and mesozooplankton abundances were eight-fold lower in summer 2008 than during nondrought years. Below-average mesozooplankton abundances persisted for well over 1 yr beyond cessation of the drought. Significant fish kills were observed in summer 2008 and 2009, perhaps due to the synergistic effects of hypoxia and reduced food availability. These results indicate that droughts can exert both ephemeral and prolonged multiyear influence on estuarine ecosystem processes and provide a glimpse into the future, when many regions of the world are predicted to face increased drought frequency and severity due to climate change.
Resumo:
Few studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.
Resumo:
Limnological factors of a sub-tropical lake Manchar were studied on seasonal basis. The mean values of various parameters were: transparency, (secchi disc reading): 90.5 cm, Orthophosphate: 0.257 mg/l, TDS: 3310,5 mg/l, Conductivity: 5232 µs/l, Total Chlorophyll (Planktonic): 31.3 µg/l Planktonic biomass: 5466 µg/l. Trophic state index (TSI) was calculated by using Carlson's (1977) equations. Mean TSI for transparency was 61, while for orthophosphate and chlorophyll, it was 82 and 64 respectively. TSI values indicate advanced eutrophic state of Manchar Lake. Morphoedaphic index (MEI) was also calculated on seasonal basis. The mean values were, TDS: 1103, conductivity: 1744, alkalinity: 60, transparency: 29 and biomass (plankton dry weight): 1746. Fish yield prediction for Manchar Lake (Z =3m, mean area=100 km²) was calculated by using MEI values. The results were quite different among various parameters. Conductivity (89.1mt/y), biomass (67.6 mt/y) and TDS (44.6 mt/y) were found to be good predictors of fish yield. Chlorophyll, transparency and alkalinity values gave very low estimate.