920 resultados para Trophic cascades
Resumo:
The rate of environmental niche evolution describes the capability of species to explore the available environmental space and is known to vary among species owing to lineage-specific factors. Trophic specialization is a main force driving species evolution and is responsible for classical examples of adaptive radiations in fishes. We investigate the effect of trophic specialization on the rate of environmental niche evolution in the damselfish, Pomacentridae, which is an important family of tropical reef fishes. First, phylogenetic niche conservatism is not detected in the family using a standard test of phylogenetic signal, and we demonstrate that the environmental niches of damselfishes that differ in trophic specialization are not equivalent while they still overlap at their mean values. Second, we estimate the relative rates of niche evolution on the phylogenetic tree and show the heterogeneity among rates of environmental niche evolution of the three trophic groups. We suggest that behavioural characteristics related to trophic specialization can constrain the evolution of the environmental niche and lead to conserved niches in specialist lineages. Our results show the extent of influence of several traits on the evolution of the environmental niche and shed new light on the evolution of damselfishes, which is a key lineage in current efforts to conserve biodiversity in coral reefs.
Resumo:
Cette thèse cible l'étude de la structure thermique de la croûte supérieure (<10km) dans les arcs magmatiques continentaux, et son influence sur l'enregistrement thermochronologique de leur exhumation et de leur évolution topographique. Nous portons notre regard sur deux chaînes de montagne appartenant aux Cordillères Américaines : Les Cascades Nord (USA) et la zone de faille Motagua (Guatemala). L'approche utilisée est axée sur la thermochronologie (U-Th-Sm)/He sur apatite et zircon, couplée avec la modélisation numérique de la structure thermique de la croûte. Nous mettons en évidence la variabilité à la fois spatiale et temporelle du gradient géothermique, et attirons l'attention du lecteur sur l'importance de prendre en compte la multitude des processus géologiques perturbant la structure thermique dans les chaînes de type cordillère, c'est à dire formées lors de la subduction océanique sous un continent.Une nouvelle approche est ainsi développée pour étudier et contraindre la perturbation thermique autour des chambres magmatiques. Deux profiles âge-elevation (U-Th-Sm)/He sur apatite et zircon, ont été collectées 7 km au sud du batholithe de Chilliwack, Cascades Nord. Les résultats montrent une variabilité spatiale et temporelle du gradient géothermique lors de l'emplacement magmatique qui peut être contrainte et séparé de l'exhumation. Durant l'emplacement de l'intrusion, la perturbation thermique y atteint un état d'équilibre (-80-100 °C/km) qui est fonction du flux de magma et de ia distance à la source du magma, puis rejoint 40 °C/km à la fin du processus d'emplacement magmatique.Quelques nouvelles données (U-Th)/He, replacées dans une compilation des données existantes dans les Cascades Nord, indiquent une vitesse d'exhumation constante (-100 m/Ma) dans le temps et l'espace entre 35 Ma et 2 Ma, associée à un soulèvement uniforme de la chaîne contrôlé par l'emplacement de magma dans la croûte durant toute l'activité de l'arc. Par contre, après ~2 Ma, le versant humide de la chaîne est affecté par une accélération des taux d'exhumation, jusqu'à 3 km de croûte y sont érodés. Les glaciations ont un triple effet sur l'érosion de cette chaîne: (1) augmentation des vitesses d'érosion, d'exhumation et de soulèvement la où les précipitations sont suffisantes, (2) limitation de l'altitude contrôlé par la position de Γ Ε LA, (3) élargissement du versant humide et contraction du versant aride de la chaîne.Les modifications des réseaux de drainage sont des processus de surface souvent sous-estimés au profil d'événements climatiques ou tectoniques. Nous proposons une nouvelle approche couplant une analyse géomorphologique, des données thermochronologiques de basse température ((U-Th-Sm)/He sur apatite et zircon), et l'utilisation de modélisation numérique thermo-cinématique pour les mettre en évidence et les dater; nous testons cette approche sur la gorge de la Skagit river dans les North Cascades.De nouvelles données (U-Th)/He sur zircons, complétant les données existantes, montrent que le déplacement horizontal le long de la faille transformante continentale Motagua, la limite des plaques Caraïbe/Amérique du Nord, a juxtaposé un bloc froid, le bloc Maya (s.s.), contre un bloque chaud, le bloc Chortis (s.s.) originellement en position d'arc. En plus de donner des gammes d'âges thermochronologiques très différents des deux côtés de la faille, le déplacement horizontal rapide (~2 cm/a) a produit un fort échange thermique latéral, résultant en un réchauffement du côté froid et un refroidissement du côté chaud de la zone de faille de Motagua.Enfin des données (U-Th-Sm)/He sur apatite témoignent d'un refroidissement Oligocène enregistré uniquement dans la croûte supérieure de la bordure nord de la zone de faille Motagua. Nous tenterons ultérieurement de reproduire ce découplage vertical de la structure thermique par la modélisation de la formation d'un bassin transtensif et de circulation de fluides le long de la faille de Motagua. - This thesis focuses on the influence of the dynamic thermal structure of the upper crust (<10km) on the thermochronologic record of the exhumational and topographic history of magmatic continental arcs. Two mountain belts from the American Cordillera are studied: the North Cascades (USA) and the Motagua fault zone (Guatemala). I use a combined approach coupling apatite and zircon (U-Th-Sm}/He thermochronology and thermo- kinematic numerical modelling. This study highlights the temporal and spatial variability of the geothermal gradient and the importance to take into account the different geological processes that perturb the thermal structure of Cordilleran-type mountain belts (i.e. mountain belts related to oceanic subduction underneath a continent}.We integrate apatite and zircon (U-Th)/He data with numerical thermo-kinematic models to study the relative effects of magmatic and surface processes on the thermal evolution of the crust and cooling patterns in the Cenozoic North Cascades arc (Washington State, USA). Two age-elevation profiles that are located 7 km south of the well-studied Chiliiwack intrusions shows that spatial and temporal variability in geothermal gradients linked to magma emplacement can be contrained and separated from exhumation processes. During Chiliiwack batholith emplacement at -35-20 Ma, the geothermal gradient of the country rocks increased to a very high steady-state value (80-100°C/km), which is likely a function of magma flux and the distance from the magma source area. Including temporally varying geothermal gradients in the analysis allows quantifying the thermal perturbation around magmatic intrusions and retrieving a relatively simple denudation history from the data.The synthesis of new and previously published (U-Th)/He data reveals that denudation of the Northern Cascades is spatially and temporally constant at -100 m/Ma between ~32 and ~2 Ma, which likely reflects uplift due to magmatic crustal thickening since the initiation of the Cenozoic stage of the continental magmatic arc. In contrast, the humid flank of the North Cascades is affected by a ten-fold acceleration in exhumation rate at ~2 Ma, which we interpret as forced by the initiation of glaciations; around 3 km of crust have been eroded since that time. Glaciations have three distinct effects on the dynamics of this mountain range: (1) they increase erosion, exhumation and uplift rates where precipitation rates are sufficient to drive efficient glacial erosion; (2) they efficiently limit the elevation of the range; (3) they lead to widening of the humid flank and contraction of the arid flank of the belt.Drainage reorganizations constitute an important agent of landscape evolution that is often underestimated to the benefit of tectonic or climatic events. We propose a new method that integrates geomorphology, low-temperature thermochronometry (apatite and zircon {U-Th-Sm)/He), and 3D numerical thermal-kinematic modelling to detect and date drainage instability producing recent gorge incision, and apply this approach to the Skagit River Gorge, North Cascades.Two zircon (U-Th)/He age-elevation profiles sampled on both sides of the Motagua Fault Zone (MFZ), the boundary between the North American and the Caribbean plates, combined with published thermochronological data show that strike-slip displacement has juxtaposed the cold Maya block (s.s.) against the hot, arc derived, Chortis block (s.s ), producing different age patterns on both sides of the fault and short-wavelength lateral thermal exchange, resulting in recent heating of the cool side and cooling of the hot side of the MFZ.Finally, an apatite (U-Th-Sm)/He age-elevation profile records rapid cooling at -35 Ma localized only in the upper crust along the northern side of the Motagua fault zone. We will try to reproduce these data by modeling the thermal perturbation resulting from the formation of a transtensional basin and of fluid flow activity along a crustal- scale strike-slip fault.
Resumo:
Trait decoupling, wherein evolutionary release of constraints permits specialization of formerly integrated structures, represents a major conceptual framework for interpreting patterns of organismal diversity. However, few empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis by examining the evolutionary consequences of the loss of the ceratomandibular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament. However, this increase in evolutionary rate is not associated with an increase in trophic breadth, but rather with morphofunctional specialization for the capture of zooplanktonic prey. Lineages lacking the ceratomandibular ligament also shows different acoustic signals (i.e. higher variation of pulse periods) from others, resulting in an increase of the acoustic diversity across the family. Our results support the idea that trait decoupling can increase morphological and behavioural diversity through increased specialization rather than the generation of novel ecotypes.
Resumo:
Carcasses represent a trophic and reproductive resource or shelter for arthropods, which are a representative component of the decomposition process. Four experiments, one per season, were conducted in a semi-rural area of Bahía Blanca, Argentina, to study the trophic roles of cadaveric beetles, evaluating the abundance, composition and dominance during all decomposition stages and seasons. Species of necrophagous, necrophilous and omnivorous habits were found. Abundance, composition and dominance of beetles in relation to their trophic roles changed according to seasons and decomposition stages. Guilds and patterns of succession were established in relation to those periods. Trophic roles could be an indicator of beetle associations with decomposition stages and seasons.
Resumo:
The northern Humboldt Current system (NHCS) off Peru is one of the most productive world marine regions. It represents less than 0.1% of the world ocean surface but presently sustains about 10% of the world fish catch, with the Peruvian anchovy or anchoveta Engraulis ringens as emblematic fish resource. Compared with other eastern boundary upwelling systems, the higher fish productivity of the NHCS cannot be explained by a corresponding higher primary productivity. On another hand, the NHCS is the region where El Niño, and climate variability in general, is most notable. Also, surface oxygenated waters overlie an intense and extremely shallow Oxygen Minimum Zone (OMZ). In this context, the main objective of this study is to better understand the trophic flows in the NHCS using both stomach content and stable isotope analyses. The study focuses on a variety of organisms from low trophic levels such as zooplankton to top predators (seabirds and fur seals). The approach combines both long-term and specific studies on emblematic species such as anchoveta, and sardine Sardinops sagax and a more inclusive analysis considering the 'global' food web in the recent years (2008 – 2012) using stable isotope analysis. Revisiting anchovy and sardine we show that whereas phytoplankton largely dominated anchoveta and sardine diets in terms of numerical abundance, the carbon content of prey items indicated that zooplankton was by far the most important dietary component. Indeed for anchovy euphausiids contributed 67.5% of dietary carbon, followed by copepods (26.3%). Selecting the largest prey, the euphausiids, provide an energetic advantage for anchoveta in its ecosystem where oxygen depletion imposes strong metabolic constrain to pelagic fish. Sardine feed on smaller zooplankton than do anchoveta, with sardine diet consisting of smaller copepods and fewer euphausiids than anchoveta diet. Hence, trophic competition between sardine and anchovy in the northern Humboldt Current system is minimized by their partitioning of the zooplankton food resource based on prey size, as has been reported in other systems. These results suggest an ecological role for pelagic fish that challenges previous understanding of their position in the foodweb (zooplanktophagous instead of phytophagous), the functioning and the trophic models of the NHCS. Finally to obtain a more comprehensive vision of the relative trophic position of NHCS main components we used stable isotope analyses. For that purpose we analyzed the δ13C and δ15N stable isotope values of thirteen taxonomic categories collected off Peru from 2008 - 2011, i.e., zooplankton, fish, squids and air-breathing top predators. The δ15N isotope signature was strongly impacted by the species, the body length and the latitude. Along the Peruvian coast, the OMZ get more intense and shallow south of ~7.5ºS impacting the baseline nitrogen stable isotopes. Employing a linear mixed-effects modelling approach taking into account the latitudinal and body length effects, we provide a new vision of the relative trophic position of key ecosystem components. Also we confirm stomach content-based results on anchoveta Engraulis ringens and highlight the potential remarkable importance of an often neglected ecosystem component, the squat lobster Pleuroncodes monodon. Indeed, our results support the hypothesis according to which this species forage to some extent on fish eggs and larvae and can thus predate on the first life stages of exploited species. However, the δ13C values of these two species suggest that anchoveta and squat lobster do not exactly share the same habitat. This would potentially reduce some direct competition and/or predation.
Resumo:
This work provides a contribution to a better understanding of the trophic ecology of important predators in the Northern Humboldt Current System, the jack mackerel (Trachurus murphyi), the chub mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas) by the characterization of the highly variable feeding patterns of these species at different spatiotemporal scales. We provided new knowledge on the comparative trophic behaviour of these species, defined as opportunistic in previous investigations. For that purpose we applied a variety of statistical methods to an extensive dataset of 27,188 non-empty stomachs. We defined the spatial organization of the forage fauna of these predators and documented changes in prey composition according to predators’ size and spatiotemporal features of environment. Our results highligh the key role played by the dissolved oxygen. We also deciphered an important paradox on the jumbo squid diet: why do they hardly forage on the huge anchovy (Engraulis ringens) biomass distributed of coastal Peru? We showed that the shallow oxygen minimum zone present off coastal Peru could hamper the co-occurrence of jumbo squids and anchovies. In addition, we proposed a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, oxygen and prey availability. Moreover we showed that the trophic behaviour of jack mackerel and chub mackerel is adapted to forage on more accessible species such as for example the squat lobster Pleurocondes monodon and Zoea larvae. Besides, both predators present a trophic overlap. But jack mackerel was not as oracious as chub mackerel, contradictorily to what was observed by others authors. Fish diet presented a high spatiotemporal variability, and the shelf break appeared as a strong biogeographical frontier. Diet composition of our fish predators was not necessarily a consistent indicator of changes in prey biomass. El Niño events had a weak effect on the stomach fullness and diet composition of chub mackerel and jack mackerel. Moreover, decadal changes in diet diversity challenged the classic paradigm of positive correlation between species richness and temperature. Finally, the global patterns that we described in this work, illustrated the opportunistic foraging behaviour, life strategies and the high degree of plasticity of these species. Such behaviour allows adaptation to changes in the environment.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in lipid and glucose homeostasis, inflammation and wound healing. In addition to ligand binding, phosphorylation can also regulate PPARs; the biological effects of phosphorylation depend on the stimulus, the kinase, the PPAR isotype, the residue modified, the cell type and the promoter investigated. The study of this dual regulation mode, which allows PPARs to integrate signals conveyed by lipophilic ligands with those coming from the plasma membrane, may ultimately offer new therapeutic strategies.
Resumo:
Tiivistelmä: Turpeen ominaisuudet ja kasvillisuus metsitetyn ja lannoitetun avosuon eri trofiatasoilla
Resumo:
This study investigates the sedimentological and geochemical changes that occurred during the last 2200 years in the meromictic Lake Lucerne (Switzerland), one of the largest freshwater lakes of Central Europe. The stable isotope composition (delta C-13 and delta O-18 values) of bulk carbonates is compared to changes in grain-size distribution (clay and silt fraction), natural trace element input (titanium and thorium concentrations), and organic material abundance (C-org, nitrogen and phosphorus) and composition (C/N ratios and hydrogen and oxygen indexes). A drop in carbonate accumulation and in the delta O-18 values of sediments between ca. AD 500 and 700 followed a large and consistent rise in chemical weathering, marked by increases in the silicate-clay fraction and in crustal element concentrations. During the following millennium, there was a long-term decreasing trend in the lithogenic trace element input and in the phosphorus loading, suggesting decreasing terrigeneous input from runoff water. The major sedimentological change over the studied period occurred after ca. AD 1800 with a significant increase in the erosion-driven silt-fraction and in the sedimentation rate. During the last century, human-induced increase in nutrient input to the lake highly enhanced the accumulation of organic matter in sediment. Changes in nutrients and oxygen conditions in the hypolimnion of Lake Lucerne during the eutrophication period (i.e., the last 40 years) highly modified the geochemical fluxes compared to the relatively stable oligotrophic conditions that prevailed during the previous 2000 years. Before the 19th century, climate driven meromixis had a limited impact on the organic matter flux to the sediments, but the accumulation of carbonate considerably decreased during periods of lower mechanical erosion rates and high chemical weathering rates. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The interactions among diet, ecology, physiology, and biochemistry affect N and C stable isotope signatures in animal tissues. Here, we examined if ecological segregation among animals in relation to sex and age existed by analyzing the signatures of delta15N and delta13C in the muscle of Western Mediterranean striped dolphins. Moreover, we used a Bayesian mixing model to study diet composition and investigated potential dietary changes over the last two decades in this population. For this, we compared isotope signatures in samples of stranded dolphins obtained during two epizootic events occurring in 1990 and 2007-2008. Mean delta13C values for females and males were not significantly different, but age-related variation indicated delta13C enrichment in both sexes, suggesting that females and males most likely fed in the same general areas, increasing their consumption of benthic prey with age. Enrichment of delta15N was only observed in females, suggesting a preference for larger or higher trophic level prey than males, which could reflect different nutritional requirements. delta13C values showed no temporal variation, although the mean delta15N signature decreased from 1990 to 2007-2008, which could indicate a dietary shift in the striped dolphin over the last two decades. The results of SIAR indicated that in 1990, hake and sardine together contributed to 60% on the diet of immature striped dolphins, and close to 90% for mature striped dolphins. Conversely, the diet of both groups in 2007-2008 was more diverse, as hake and sardine contributed to less than 40% of the entire diet. These results suggest a dietary change that was possibly related to changes in food availability, which is consistent with the depletion of sardine stocks by fishing.
Resumo:
Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.
Resumo:
Amphibole fractionation in the deep roots of subduction-related magmatic arcs is a fundamental process for the generation of the continental crust. Field relations and geochemical data of exposed lower crustal igneous rocks can be used to better constrain these processes. The Chelan Complex in the western U. S. forms the lowest level of a 40-km thick exposed crustal section of the North Cascades and is composed of olivine websterite, pyroxenite, hornblendite, and dominantly by hornblende gabbro and tonalite. Magmatic breccias, comb layers and intrusive contacts suggest that the Chelan Complex was build by igneous processes. Phase equilibria, textural observations and mineral chemistry yield emplacement pressures of similar to 1.0 GPa followed by isobaric cooling to 700 degrees C. The widespread occurrence of idiomorphic hornblende and interstitial plagioclase together with the lack of Eu anomalies in bulk rock compositions indicate that the differentiation is largely dominated by amphibole. Major and trace element modeling constrained by field observations and bulk chemistry demonstrate that peraluminous tonalite could be derived by removing successively 3% of olivine websterite, 12% of pyroxene hornblendite, 33% of pyroxene hornblendite, 19% of gabbros, 15% of diorite and 2% tonalite. Peraluminous tonalite with high Sr/Y that are worldwide associated with active margin settings can be derived from a parental basaltic melt by crystal fractionation at high pressure provided that amphibole dominates the fractionation process. Crustal assimilation during fractionation is thus not required to generate peraluminous tonalite.