981 resultados para Trephine drill
Resumo:
Autogenous bone grafts are considered to be the gold standard in bone regeneration because of their osteogenic activity; however, due to limited availability of intraoral donor sites and the need to resolve the demands of patients requires an alternative to these. Two male patients were submitted to implant surgery in two stages with 6 months intervals between each of them: the first was exodontia and placement of DBM graft into the socket; the second stage was the drill with a 2 mm internal diameter trephine in center of the alveolar ridge previously grafted with DBM and subsequent implant placement. The samples were analyzed under histological techniques. A very mature bone was observed at 6 months after DBM graft placement in the sockets, showing it to be a good alternative as bone graft.
Resumo:
OBJECTIVE: The aim of this study was to evaluate histomorphometrically the effect of alveolex (Propolis 10%) on the repair of bone cavities in the calvaria of rats. MATERIALS AND METHODS: A 5 mm diameter bone defect was made in the calvaria of male Wistar rats using the drill-type trephine. The defects were filled with rhBMP-21Alveolex, rhBMP-2, Alveolex, or coagulum. Twenty-eight animals with seven subjects on each were sacrificed 30 days after surgery and samples were fixed and embedded in paraffin. Histological sections stained by HE (hematoxylin and eosin) were obtained from the calvaria bone defect and analyzed by a differential point-counting method. RESULTS: Group I and II, rhBMP-21Alveolex and rhBMP-2, respectively, presented higher levels of newly formed bone than other groups (P < 0.001). There were not significant differences between groups I and II (P > 0.05). In addition, there was not significant difference between groups III and IV, Control-Coagulum and Alveolex, respectively (P > 0.05). CONCLUSION: Alveolex has increased the bone repair in calvaria defects of rats when associated to rhBMP-2, however without significant differences for rhBMP-2 isolated group; Alveolex isolated group showed the lowest levels of newly formed bone with no significant differences to coagulum group (control). Microsc. Res. Tech. 75: 36-41, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.