999 resultados para Tree-rings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that ( 1) the tree-rings are annual; ( 2) the ring widths decrease; and ( 3) their alpha-cellulose delta(13)C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose delta(13)C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-dated tree-ring cores (Pinus merkusii) from north-central Thailand, spanning AD 1620-1780, were used to investigate atmospheric C-14 for the tropics during the latter part of the Little Ice Age. In addition, a cross-dated section of Huon pine from western Tasmania, covering the same period of time, was investigated. A total of 16 pairs of decadal samples were extracted to alpha-cellulose for AMS C-14 analysis using the ANTARES facility at ANSTO. The C-14 results from Thailand follow the trend of the southern hemisphere, rather than that of the northern hemisphere. This is a surprising result, and we infer that atmospheric C-14 for north-central Thailand, at 17degrees N, was strongly influenced by the entrainment of southern hemisphere air parcels during the southwest Asian monsoon, when the Inter-Tropical Convergence Zone moves to the north of our sampling site. Such atmospheric transport and mixing are therefore considered to be one of the principal mechanisms for regional C-14 offsets. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotope ratios from tree rings and peatland mosses have become important proxies of past climate variations. We here compare recent stable carbon and oxygen isotope ratios in cellulose of tree rings from white spruce (Picea glauca), growing near the arctic tree line; and cellulose of Sphagnum fuscum stems, growing in a hummock of a subarctic peatland, in west-central Canada. Results show that carbon isotopes in S. fuscum correlate significantly with July temperatures over the past ~20 yr. The oxygen isotopes correlate with both summer temperature and precipitation. Analyses of the tree-ring isotopes revealed summer temperatures to be the main controlling factor for carbon isotope variations, whereas tree-ring oxygen isotope ratios are controlled by a combination of spring temperatures and precipitation totals. We also explore the potential of combining high-frequency (annual) climate signals derived from long tree-ring series with low-frequency (decadal to centennial) climate signals derived from the moss remains in peat deposits. This cross-archive comparison revealed no association between the oxygen isotopes, which likely results from the varying sensitivity of the archives to different seasons. For the carbon isotopes, common variance could be achieved through adjustments of the Sphagnum age model within dating error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kongtong Mountain area is a marginal area of the Asian summer monsoon and is sensitive to monsoon dynamics. The sensitivity highlights the need to establishing long-term climate records there and evaluating links with the Asian monsoon. Using "signal-free" methods, we developed a tree-ring chronology based 52 ring-width series from 23 Pinus tabulaeformis and Pinus armandidi trees in the Kongtong Mountain, northern China. Tree growth is highly correlated (0.844) with the Palmer Drought Severity Index (PDSI) from May to July, demonstrating the strength of PDSI in modeling drought conditions in this region. We therefore developed a robust May-July PDSI reconstruction spanning 1615-2009, which explained 71.2% of the instrumental variance for the period 1951-2005. Extremely dry epochs are found in periods of 1723-1727 and 1928-1932, and significant wet conditions are seen from 1696-1700, 1753-1757 and 1963-1969. These persistent dry and wet epochs were also found in northeastern Mongolia, suggesting similar drought regimes between these two regions. The dryness that occurred in the 1920s-1930s was the most severe and was concurrent with a warming period. This warming/drying relationship of the 1920s-1930s may be an analog to the current drying trend in northern China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accuracy in tree woody growth estimates is important to global carbon budget estimation and climate-change science. Tree growth in permanent sampling plots (PSPs) is commonly estimated by measuring stem diameter changes, but this method is susceptible to bias resulting from water-induced reversible stem shrinkage. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. We propose and test a novel approach for estimating and correcting this bias at the community level. In a 50-ha PSP from a seasonally dry tropical forest in southern India, where tape measurements have been taken every four years from 1988 to 2012, for nine trees we estimated bias due to reversible stem shrinkage as the difference between woody growth measured using tree rings and that estimated from tape. We tested if the bias estimated from these trees could be used as a proxy to correct bias in tape-based growth estimates at the PSP scale. We observed significant shrinkage-related bias in the growth estimates of the nine trees in some censuses. This bias was strongly linearly related to tape-based growth estimates at the level of the PSP, and could be used as a proxy. After bias was corrected, the temporal variance in growth rates of the PSP decreased, while the effect of exceptionally dry or wet periods was retained, indicating that at least a part of the temporal variability arose from reversible shrinkage-related bias. We also suggest that the efficacy of the bias correction could be improved by measuring the proxy on trees that belong to different size classes and census timing, but not necessarily to different species. Our approach allows for reanalysis - and possible reinterpretation of temporal trends in tree growth, above ground biomass change, or carbon fluxes in forests, and their relationships with resource availability in the context of climate change. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate modeling using coastal tree-ring chronologies has yielded the first summer temperature reconstructions for coastal stations along the Gulf of Alaska and the Pacific Northwest. These land temperature reconstructions are strongly correlated with nearby sea surface temperatures, indicating large-scale ocean-atmospheric influences. Significant progress has also been made in modeling winter land temperatures and sea surface temperatures from coastal and shipboard stations. In addition to temperature, the pressure variability center over the central North Pacific Ocean (PAC), which is related to the strength and location of the Aleutian Low pressure system, could be extended using coastal tree rings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Our objective is to combine terrestrial and oceanic records for reconstructing West Coast climate. Tree rings and marine laminated sediments provide high-resolution, accurately dated proxy data on the variability of climate and on the productivity of the ocean and have been used to reconstruct precipitation, temperature, sea level pressure, primary productivity, and other large-scale parameters. We present here the latest Santa Barbara basin varve chronology for the twentieth century as well as a newly developed tree-ring chronology for Torrey pine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Synoptic dendroclimatology uses dated tree rings to study and reconstruct climate from the viewpoint of the climate's weather components and their relationship to atmospheric circulation. This approach defines a connection between large-scale circulation and ring-width variation at local sites using correlation fields, composite maps, indexing, and other circulation-based methodologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge on juvenile tree growth is crucial to understand how trees reach the canopy in tropical forests. However, long-term data on juvenile tree growth are usually unavailable. Annual tree rings provide growth information for the entire life of trees and their analysis has become more popular in tropical forest regions over the past decades. Nonetheless, tree ring studies mainly deal with adult rings as the annual character of juvenile rings has been questioned. We evaluated whether juvenile tree rings can be used for three Bolivian rainforest species. First, we characterized the rings of juvenile and adult trees anatomically. We then evaluated the annual nature of tree rings by a combination of three indirect methods: evaluation of synchronous growth patterns in the tree- ring series, (14)C bomb peak dating and correlations with rainfall. Our results indicate that rings of juvenile and adult trees are defined by similar ring-boundary elements. We built juvenile tree-ring chronologies and verified the ring age of several samples using (14)C bomb peak dating. We found that ring width was correlated with rainfall in all species, but in different ways. In all, the chronology, rainfall correlations and (14)C dating suggest that rings in our study species are formed annually.