933 resultados para Treatment Plants


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox™), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24× sample enrichment required to induce a 50% response in the Microtox™ assay to 84×, from 30× sample enrichment to induce a 50% reduction in photosynthetic yield to 125×, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (mu) of 0.28 day(-1) and biomass productivities of 132 mg L-1 day(-1). The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g L-1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This data report includes the results from Alachua County Environmental Protection Department’s inspections of wastewater treatment plants (WWTP) within Alachua County during the 2006 and 2007 fiscal years (October 2005 – September 2007). Groundwater monitoring data provided to the Florida Department of Environmental Protection Department by the WWTP operators is included for those treatment plants that are required to submit this information (PDF has 44 pages.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A proactive risk management strategy seeks to prevent accidents from taking place and maintain the safety of a system. In this context, the task of identifying and disseminating early warning signs and signals is among the most important. The problem is that warning signs that are present before an accident takes place are often being overlooked and not picked up or identified as warning signs. If these warning signs were responded to, then an accident may be averted. Accidents occuring in the critical domain of a drinking water treatments works can have serious implications for the public health of consumers of the water supplied. Realising and comprehending early warning signs is a major challenge for the domain of systems safety and especially in the domain of a water treatment works. The approaches that are typically used to enhance the realisation, comprehension and dissemination of early warning signs in the water treatment domain in Ireland mainly involves the creation of accident scenarios, the use of monitoring data and procedures for the dissemination of warnings. While all of these approaches are all useful to inform the mental or process models of possible accident scenarios, nevertheless, accidents are still occurring in this domain. Therefore, a new approach to enhance the comprehension of and effective dissemination of early warning signs is required in order to improve safety and proactive risk management strategies. The contributions of this thesis is the provision of a set of attributes associated with the early warning sign concept that provides meaningful data on the early warning signs and allows recipients to better comprehend them. The values of these attributes were customised for application in the water treatment domain. This research proves that early warning signs at a water treatment works received with information on their attributes are comprehended and communicated more effectively and efficiently than the usual pragmatic approach and thereby improves the safety and proactive risk management strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many of the existing methods for the treatment of rubber latex centrifugation eflluent are not only unsatisfactory in their efliciency to effect near perfect treatment in bringing down the COD to optimum level, but also time consuming and need a large landspace. As the rate of effluent generation is extremely high (20 litres for kilogram of rubber) there is a need for development of efficient system,capable of rapid reduction of COD and BOD. Though the organic load of the rubber efiluent is very high, it does not contain much processed chemicals and therefore it can be considered as a ‘biological eflluent’. Further, the ratio of the Chemical Oxygen Demand to Biological Oxygen Demand (COD/BOD) of this effluent remain almost as a constant value. According to Montgomery (1967), estimation of BOD is not ideally suited for studies on process design, treatability, control of treatment plants, setting standards for treated effluents and assessing the effect of polluting discharges on the oxygen resources of receiving waters. Hence in the present study COD was measured to determine the impact of treatment system on the effluent. In the present study, attempts were made to evaluate the efficiencies of certain methods such as packed bed reactor using immobilized microbial cells, rotating biological contactor (RBC) and activated sludge process, for rapid and efficient treatment of natural rubber latex centrifugation effluent. In addition, studies were also carn'ed out to develop a suitable bioprocess for the coagulation of skim latex, as an alternative to the presently used acid coagulation process towards reducing the pollution load, besides recovering quality rubber

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The possibility of thermal treatment plants of municipal wastewater is an alternative solution for the final disposition of the sludge produced on small cities as Barueri, a small town of São Paulo State, Brazil. Combustion and pyrolysis of that municipal waste, occurring respectively in air and nitrogen, have been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The main steps of each case were analyzed and Kissinger plots were used to estimate respective activation energies. DTG peaks are more indicated to represent the condition of maximum reaction rates than DTA peaks.