958 resultados para Travel time (Traffic engineering)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IPTV is now offered by several operators in Europe, US and Asia using broadcast video over private IP networks that are isolated from Internet. IPTV services rely ontransmission of live (real-time) video and/or stored video. Video on Demand (VoD)and Time-shifted TV are implemented by IP unicast and Broadcast TV (BTV) and Near video on demand are implemented by IP multicast. IPTV services require QoS guarantees and can tolerate no more than 10-6 packet loss probability, 200 ms delay, and 50 ms jitter. Low delay is essential for satisfactory trick mode performance(pause, resume,fast forward) for VoD, and fast channel change time for BTV. Internet Traffic Engineering (TE) is defined in RFC 3272 and involves both capacity management and traffic management. Capacity management includes capacityplanning, routing control, and resource management. Traffic management includes (1)nodal traffic control functions such as traffic conditioning, queue management, scheduling, and (2) other functions that regulate traffic flow through the network orthat arbitrate access to network resources. An IPTV network architecture includes multiple networks (core network, metronetwork, access network and home network) that connects devices (super head-end, video hub office, video serving office, home gateway, set-top box). Each IP router in the core and metro networks implements some queueing and packet scheduling mechanism at the output link controller. Popular schedulers in IP networks include Priority Queueing (PQ), Class-Based Weighted Fair Queueing (CBWFQ), and Low Latency Queueing (LLQ) which combines PQ and CBWFQ.The thesis analyzes several Packet Scheduling algorithms that can optimize the tradeoff between system capacity and end user performance for the traffic classes. Before in the simulator FIFO,PQ,GPS queueing methods were implemented inside. This thesis aims to implement the LLQ scheduler inside the simulator and to evaluate the performance of these packet schedulers. The simulator is provided by ErnstNordström and Simulator was built in Visual C++ 2008 environmentand tested and analyzed in MatLab 7.0 under windows VISTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of cities in Latin America played host to workshops on measures for reducing traffic congestion, as part of efforts to publicize the results of a project recently completed by ECLAC, and which received support from the German Agency for Technical Cooperation (GTZ). Congestion is beginning to pose a threat to the quality of life of the cities of the region; the most obvious manifestation of this congestion is the increase in daily travel time, especially in peak hours.The workshops are a contribution to efforts to curb congestion, since they help foster awareness of the extent of the negative consequences generated by the phenomenon, and are a means of publicizing options for dealing with it. This edition of the Bulletin outlines the contents of the workshops and their results. The workshops are offered to urban authorities and other institutions interested in training staff employed in positions involving traffic management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic flow time series data are usually high dimensional and very complex. Also they are sometimes imprecise and distorted due to data collection sensor malfunction. Additionally, events like congestion caused by traffic accidents add more uncertainty to real-time traffic conditions, making traffic flow forecasting a complicated task. This article presents a new data preprocessing method targeting multidimensional time series with a very high number of dimensions and shows its application to real traffic flow time series from the California Department of Transportation (PEMS web site). The proposed method consists of three main steps. First, based on a language for defining events in multidimensional time series, mTESL, we identify a number of types of events in time series that corresponding to either incorrect data or data with interference. Second, each event type is restored utilizing an original method that combines real observations, local forecasted values and historical data. Third, an exponential smoothing procedure is applied globally to eliminate noise interference and other random errors so as to provide good quality source data for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid population increase and booming economic growth have caused a significant escalation in car ownership in many cities, leading to additional or, multiple traffic problems on congested roadways. The increase of automobiles is generating a significant amount of congestion and pollution in many cities. It has become necessary to find a solution to the ever worsening traffic problems in our cities. Building more roadways is nearly impossible due to the limitations of right-of-way in cities. Studies have shown that guideway transit could provide effective transportation and could stimulate land development. The Medium-Capacity Guideway Transit (MCGT) is one of the alternatives to solve this problem. The objective of this research was to better understand the characteristics of MCGT systems, to investigate the existing MCGT systems around the world and determine the main factors behind the planning of successful systems, and to develop a MCGT planning guide. The factors utilized in this study were determined and were analyzed using Excel. A MCGT Planning Guide was developed using Microsoft Visual Basic. ^ A MCGT was defined as a transit system whose capacity can carry up to 20,000 passengers per hour per direction (pphpd). The results shown that Light Rail Transit (LRT) is favored when peak hour demand is less than 13,000 pphpd. Automated People Mover (APM) is favored when the peak hour demand is more than 18,000 pphpd. APM systems could save up to three times the waiting time cost compared to that of the LRT. If comfort and convenience are important, then using an APM does make sense. However, if cost is the critical factor, then LRT will make more sense because it is reasonable service at a reasonable price. If travel time and safety (accident/crush) costs were included in calculating life-cycle “total” costs, the capital cost advantage of LRT disappeared and APM could become very competitive. The results also included a range of cost-performance criteria for MCGT systems that help planners, engineers, and decision-makers to select the most feasible system for their respective areas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As traffic congestion exuberates and new roadway construction is severely constrained because of limited availability of land, high cost of land acquisition, and communities' opposition to the building of major roads, new solutions have to be sought to either make roadway use more efficient or reduce travel demand. There is a general agreement that travel demand is affected by land use patterns. However, traditional aggregate four-step models, which are the prevailing modeling approach presently, assume that traffic condition will not affect people's decision on whether to make a trip or not when trip generation is estimated. Existing survey data indicate, however, that differences exist in trip rates for different geographic areas. The reasons for such differences have not been carefully studied, and the success of quantifying the influence of land use on travel demand beyond employment, households, and their characteristics has been limited to be useful to the traditional four-step models. There may be a number of reasons, such as that the representation of influence of land use on travel demand is aggregated and is not explicit and that land use variables such as density and mix and accessibility as measured by travel time and congestion have not been adequately considered. This research employs the artificial neural network technique to investigate the potential effects of land use and accessibility on trip productions. Sixty two variables that may potentially influence trip production are studied. These variables include demographic, socioeconomic, land use and accessibility variables. Different architectures of ANN models are tested. Sensitivity analysis of the models shows that land use does have an effect on trip production, so does traffic condition. The ANN models are compared with linear regression models and cross-classification models using the same data. The results show that ANN models are better than the linear regression models and cross-classification models in terms of RMSE. Future work may focus on finding a representation of traffic condition with existing network data and population data which might be available when the variables are needed to in prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freeway systems are becoming more congested each day. One contribution to freeway traffic congestion comprises platoons of on-ramp traffic merging into freeway mainlines. As a relatively low-cost countermeasure to the problem, ramp meters are being deployed in both directions of an 11-mile section of I-95 in Miami-Dade County, Florida. The local Fuzzy Logic (FL) ramp metering algorithm implemented in Seattle, Washington, has been selected for deployment. The FL ramp metering algorithm is powered by the Fuzzy Logic Controller (FLC). The FLC depends on a series of parameters that can significantly alter the behavior of the controller, thus affecting the performance of ramp meters. However, the most suitable values for these parameters are often difficult to determine, as they vary with current traffic conditions. Thus, for optimum performance, the parameter values must be fine-tuned. This research presents a new method of fine tuning the FLC parameters using Particle Swarm Optimization (PSO). PSO attempts to optimize several important parameters of the FLC. The objective function of the optimization model incorporates the METANET macroscopic traffic flow model to minimize delay time, subject to the constraints of reasonable ranges of ramp metering rates and FLC parameters. To further improve the performance, a short-term traffic forecasting module using a discrete Kalman filter was incorporated to predict the downstream freeway mainline occupancy. This helps to detect the presence of downstream bottlenecks. The CORSIM microscopic simulation model was selected as the platform to evaluate the performance of the proposed PSO tuning strategy. The ramp-metering algorithm incorporating the tuning strategy was implemented using CORSIM's run-time extension (RTE) and was tested on the aforementioned I-95 corridor. The performance of the FLC with PSO tuning was compared with the performance of the existing FLC without PSO tuning. The results show that the FLC with PSO tuning outperforms the existing FL metering, fixed-time metering, and existing conditions without metering in terms of total travel time savings, average speed, and system-wide throughput.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report addresses delays to freight shippers. Although the focus is on just-in-time (JIT) businesses, the authors also note that non JIT businesses also suffer delays that impact their productivity. The table of contents lists the following headings: chapter 1 - introduction - a trial application: the Des Moines metropolitan area; structure of the report; chapter 2 - reliability at the forefront of freight transport demand - manufacturing and inventory; just-in-time operations in the U.S.; transportation consequences; summary; chapter 3 - JIT operations in Iowa - survey and sample; trucking activity and service; just-in-time truck transportation in Iowa; assessment of factors affecting truck transportation service; summary and conclusions; chapter 4 - travel time uncertainty induced by incidents - a probabilistic model for incident occurrences and durations; calculation of delay; trial application; conclusions; and chapter 5 - conclusions and recommendations - conclusions; recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 18: Optimization in Collaborative Networks