850 resultados para Transition démographique
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
In the unlubricated sliding wear of steels the mild-severe and severe-mild wear transitions have long been investigated. The effect of system inputs such as normal load, sliding speed, environment humidity and temperature, material properties, among others, on those transitions have also been studied. Although transitions seem to be caused by microstructural changes, surfaces oxidation and work-hardening, some questions remain regarding the way each aspect is involved. Since the early studies in sliding wear, it has usually been assumed that only the material properties of the softer body influence the wear behavior of contacting surfaces. For example, the Archard equation involves only the hardness of the softer body, without considering the hardness of the harder body. This work aims to discuss the importance of the harder body hardness in determining the wear regime operation. For this, pin-on-disk wear tests were carried out, in which the disk material was always harder than the pin material. Variations of the friction force and vertical displacement of the pin were registered during the tests. A material characterization before and after tests was conducted using stereoscopy and scanning electron microscopy (SEM) methods, in addition to mass loss, surface roughness and microhardness measurements. The wear results confirmed the occurrence of a mild-severe wear transition when the disk hardness was decreased. The disk hardness to pin hardness ratio (H(d)/H(p)) was used as a criterion to establish the nature of surface contact deformation and to determine the wear regime transition. A predominantly elastic or plastic contact, characterized by H(d)/H(p) values higher or lower than one, results in a mild or severe wear regime operation, respectively. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mechanical blocking of the columnar front during the columnar to equiaxed transition (CET) is studied by quantitatively comparing the CET positions obtained with one stochastic model and two deterministic models for the unidirectional solidification of an Al-7 (wt pct) Si alloy. One of the deterministic models is based on the solutal blocking of the columnar front, whereas the other model is based on the mechanical blocking. The solutal-blocking model and the mechanical-blocking model with the traditional blocking fraction of 0.49 give columnar zones larger than those predicted with the stochastic model. When a blocking fraction of 0.2 is adopted, however, the agreement is very good for a range of nucleation undercoolings and number density of equiaxed grains. Therefore, changing the mechanical-blocking fraction in deterministic models from 0.49 to 0.2 seems to model more accurately the mechanical-blocking process that can lead to the CET.
Resumo:
A deterministic mathematical model for steady-state unidirectional solidification is proposed to predict the columnar-to-equiaxed transition. In the model, which is an extension to the classic model proposed by Hunt [Hunt JD. Mater Sci Eng 1984;65:75], equiaxed grains nucleate according to either a normal or a log-normal distribution of nucleation undercoolings. Growth maps are constructed, indicating either columnar or equiaxed solidification as a function of the velocity of isotherms and temperature gradient. The fields A columnar and equiaxed growth change significantly with the spread of the nucleation undercooling distribution. Increasing the spread Favors columnar solidification if the dimensionless velocity of the isotherms is larger than 1. For a velocity less than 1, however, equiaxed solidification is initially favored, but columnar solidification is enhanced for a larger increase in the spread. This behavior was confirmed by a stochastic model, which showed that an increase in the distribution spread Could change the grain structure from completely columnar to 50% columnar grains. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Phenothiazines (PTZ) are drugs widely used in the treatment of schizophrenia. Trifluoperazine, a piperazinic PTZ derivative, has been described as inhibitor of the mitochondrial permeability transition (MPT). We reported previously the antioxidant activity of thioridazine at relatively low concentrations associated to the inhibition of the MPT (Brit. J. Pharmacol., 2002;136:136-142). In this study, it was investigated the induction of MPT by PTZ derivatives at concentrations higher than 10 mu M focusing on the molecular mechanism involved. PTZ promoted a dose-response mitochondrial swelling accompanied by mitochondrial transmembrane potential dissipation and calcium release, being thioridazine the most potent derivative. PTZ-induced MPT was partially inhibited by CsA or Mg(2+) and completely abolished by the abstraction of calcium. The oxidation of reduced thiol group of mitochondrial membrane proteins by PTZ was upstream the VIP opening and it was not sufficient to promote the opening of PTP that only occurred when calcium was present in the mitochondrial matrix. EPR experiments using DMPO as spin trapping excluded the participation of reactive oxygen species on the PTZ-induced MPT. Since 117 give rise to cation radicals chemically by the action of peroxidases and cyanide inhibited the PTZ-induced swelling, we propose that VIZ bury in the inner mitochondrial membrane and the chemically generated 117 cation radicals modify specific thiol groups that in the presence of Ca(2+) result in MPT associated to cytochrome c release. These findings contribute for the understanding of mechanisms of MET induction and may have implications for the cell death induced by PTZ. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid present in plants of the genus Crotalaria that causes cytotoxicity and genotoxicity in animals and humans. It is well established that the toxicity of MCT results from its hepatic bioactivation to dehydromonocrotaline (DHM), an alkylating agent, but the exact mechanism of action remains unknown. In a previous study, we demonstrated DHM`s inhibition of mitochondrial NADH-dehydrogenase activity at micromolar concentrations, which is an effect associated with a significant reduction in ATP synthesis. As a follow-up study, we have evaluated the ability of DHM to induce mitochondrial permeability transition (MPT) and its associated processes in isolated rat liver mitochondria. In the presence of 10 mu M Ca(2+), DHM (50-250 mu M) elicited MPT in a concentration-dependent, but cyclosporine A-independent manner, as assessed by mitochondrial swelling, which is associated with mitochondrial Ca(2+) efflux and cytochrome c release. DHM (50-250 mu M) did not cause hydrogen peroxide accumulation but did deplete endogenous glutathione and NAD(P)H, while oxidizing protein thiol groups. These results potentially indicate the involvement of mitochondria, via apoptosis, in the well-documented cytotoxicity of monocrotaline. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.
Resumo:
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at Tapproximate to0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBa2Cu3O7-delta sample, indicates that superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T.
Resumo:
A two-step method of loading controlled amounts of transition metal cations into alumina pillared clays (Al-PILCs) is proposed. First, calcined Al-PILC was dispersed into an aqueous solution of sodium or ammonium ions. Increasing the pH of the dispersion resulted in an increase in the amount of cations loaded into the clay. The ion-doped Al-PILC was then exchanged with an aqueous solution of transition metal salt at a pH of similar to 4.5 to replace Na+ or NH4+ ions by transition metal cations. Analytical techniques such as atomic absorption spectroscopy, X-ray diffraction, diffuse reflectance-ultraviolet-visible spectroscopy, as well as N-2 adsorption were used to characterize the PILC products with and without the loading of metal ions. The introduced transition metal species exist in the forms of hydrated ions in the PILC hosts. The content of transition metal ions in the final product increased with the amount of Na+ or NH4+ loaded in the first step so that by controlling the pH of the dispersion in the first step, one can control the doping amounts of transition metal cations into Al-PILCs. A sample containing 0.125 mmol/g of nickel was thus obtained, which is similar to 3 times of that obtained by directly exchanging Al-PILC with Ni(NO3)(2) solution, while the pillared layered structures of the Al-PILC remained. The porosity analysis using N-2 adsorption data indicated that most of the doped transition metal ions dispersed homogeneously in the micropores of the Al-PILC, significantly affecting the micropore structure.