989 resultados para Transgenic Sugar Cane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of the yeast Cryptococcus laurentii in complete broth for yeast and in liquid and semi-solid sugar cane vinasse media supplemented with several nitrogen and phosphorus sources was analysed in order to evaluate its potential utilization as biomass producer from vinasse. The trials were performed in a 1-liter fermentor, at 30-degrees-C, under magnetic agitation for 48 hours, and initial pH 5.0 for the liquid media. The parameters analysed were biomass, protein, and final pH. For the semi-solid media, agitated flasks under rotational agitation for 24 hours, at 30-degrees-C, and initial pH 5.0 were used. The results obtained showed that the yeast did not grow well in liquid sugar cane vinasse media, both supplemented or not, in comparison to the complete broth for yeast. The protein content was also lower in liquid sugar cane vinasse media. The medium pH did not alter markedly during the cultivation. The best results were obtained in semi-solid sugar cane vinasse media with supplementation, probably due to the known polysaccharide production by this species, which allows a better survival to solid substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes the use of sugar cane bagasse as solid phase extractor for cadmium determination after complexation of the analyte with ammonium diethyldithiophosphate (ADDP) and sorption of the Cd-DDP complexes on the solid support. The concomitants were separated using a flow injection analysis (FIA) system coupled to flame atomic absorption spectrometry (FAAS) for determination. The main parameters such as ADDP concentration, acid medium, flow rate, reaction coil length, and reaction time were investigated.The results obtained with HNO3 showed good accuracy and precision. The enhancement factor was 20.5 times for a 120-second preconcentration time, and the analytical frequency was 25 determinations per hour. The calibration curve was linear over the concentration range of 1-40 mu g L-1 Cd with a LOD of 0.697 mu g L-1 Cd and a relative standard deviation of 0.96% after 12 successive measurements of 30 mu g L-1 Cd.The proposed method was evaluated for the FIA-FAAS analysis of certified reference materials (tomato leaves, spinach leaves, and bovine liver) and Cd-spiked foods (shrimp, sardine, tuna, chicken liver and bovine liver). Good recoveries (80.0-97.1%) for the Cd-spiked samples and certified reference materials were obtained. The results of bagasse-packed minicolumns were compared with Si-C,8 packed minicolumns. The F-test was applied between Si-C-18/Bagasse minicolumns, Si-C-18/certified values, and bagasse/certified values. It was found that the results were in agreement with the certified values at a 95% confidence level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, methylcellulose produced from sugar cane bagasse was characterized by FTIR, WAXD, DTA and TGA techniques. Two samples were synthesized: methylcellulose A and rnethylcellulose B. The only difference in the process was the addition of fresh reactants during the preparation of methylcellulose B. The ratio between the absorption intensities of the C-H stretching band at around 2900 cm(-1) and C-H stretching at around 3400 cm(-1) for methylcellulose B is higher than for methylcellulose A, indicating that methylcellulose B showed an increase in the degree of substitution (DS). Methylcellulose A presents a more heterogeneous structure, which is similar to the original cellulose as seen through FTIR and DTA. Methylcellulose B showed thermal properties similar to commercial methylcellulose. The modification of rnethylcellulose preparation method allows the production of a material with higher DS, crystallinity and thermal stability in relation to the original cellulose and to methylcellulose A. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selected yeast strains were examined for their ability lo grow, to retain cell viability and to ferment diluted sugar cane juice (15% total sugar, w/v) to ethanol at 40-degrees-C. The degree of agitation (aeration) affects the thermotolerance while the method used for isolation of the strains appears to have no significant effect. The yeast isolated are aerobically fermentative with increased levels of fermentation and growth resulting from agitation (aeration), the exact level of these increases being dependent on the strain used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels throughimpedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing both LB and cast films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incomplete combustion of biomass is one of the most important sources of emissions of organic compounds into the atmosphere, like polycyclic aromatic hydrocarbons (PAHs) which show genotoxic activity. Since environmental samples generally contain interferents and trace amounts of PAHs of interest, concentration and clean-up procedures are usually required prior to the final chromatographic analysis. This paper discusses the performance of Sep-Pak cartridges (silica gel and RP18) on clean-up of sugar cane soot extract. The best results were obtained with a silica Sep-Pak cartridge. The recoveries ranged from 79% (benzo[b]fluoranthene) to 113% (benzo[e]pyrene). (C) 2000 Elsevier B.V. B.V. All rights reserved.