930 resultados para Transcription Factor E2f-1
Resumo:
Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.
Resumo:
Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E-17) in the rat such that embryonic day 19 (E-19) wounds do not re-epithelialize. Moreover, wounds created in E-17 fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E-17 and E-19 skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E-17 and E-19 skin. c-fos and c-jun induction was transient in E-17 skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E-19 skin, AP-11 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E-17 skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.
Resumo:
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Resumo:
Prostate cancer is a worldwide health concern. Pygopus2 (hPygo2) protein is required for growth in breast, ovarian, cervical and prostate cancer. hPygo2 expression is regulated by the Rb protein via the ETS factor Elf-1 in cervical and breast cancer. Additionally, the ETS family has confirmed roles in carcinogenesis and proliferation. The mechanism of hPygo2 expression has not been elucidated in prostate cancer. My hypothesis proposes that hPygo2 expression is regulated by Elf-1 bound to its promoter region. Prostate cancer cell lines were used to show protein levels of hPygo2, Elf-1 and ETS. ChIP assays confirmed varying binding capability of Elf-1 and ETS factors to the proximal promoter region between cell lines. Elf-1 knockdown experiments were performed, results show no change in hPygo2 protein levels but show reduction in 22Rv1 mRNA levels. These results suggest that Elf-1 might not be exclusively involved in the activation of Pygopus expression in prostate cancer.
Resumo:
Date of Acceptance: 12/07/2015 © 2015 John Wiley & Sons Ltd. Acknowledgements This study was supported by funding from the Encompass kick start and SMART:Scotland award schemes of Scottish Enterprise and Friends of Anchor. The Grampian Biorepository assisted with the immunohistochemical investigations.
Resumo:
Date of Acceptance: 12/07/2015 © 2015 John Wiley & Sons Ltd. Acknowledgements This study was supported by funding from the Encompass kick start and SMART:Scotland award schemes of Scottish Enterprise and Friends of Anchor. The Grampian Biorepository assisted with the immunohistochemical investigations.
Resumo:
To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR-211. We focused on this pigment-cell-enriched miRNA as it is derived from the microphthalmia-associated transcription factor (MITF)-regulated gene, TRPM1 (melastatin). We find that miR-211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR-211, including POU3F2 (BRN2). Inhibition of miR-211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR-211 represses BRN2 in differentiated cells. Over-expression of miR-211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non-overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR-211 expression.
Resumo:
Patent foramen ovale (PFO) is associated with clinical conditions including cryptogenic stroke, migraine and varicose veins. Data from studies in humans and mouse suggest that PFO and the secundum form of atrial septal defect (ASDII) exist in an anatomical continuum of septal dysmorphogenesis with a common genetic basis. Mutations in multiple members of the evolutionarily conserved cardiac transcription factor network, including GATA4, cause or predispose to ASDII and PFO. Here, we assessed whether the most prevalent variant of the GATA4 gene, S377G, was significantly associated with PFO or ASD. Our analysis of world indigenous populations showed that GATA4 S377G was largely Caucasian-specific, and so subjects were restricted to those of Caucasian descent. To select for patients with larger PFO, we limited our analysis to those with cryptogenic stroke in which PFO was a subsequent finding. In an initial study of Australian subjects, we observed a weak association between GATA4 S377G and PFO/Stroke relative to Caucasian controls in whom ASD and PFO had been excluded (OR = 2.16; p = 0.02). However, in a follow up study of German Caucasians no association was found with either PFO or ASD. Analysis of combined Australian and German data confirmed the lack of a significant association. Thus, the common GATA4 variant S377G is likely to be relatively benign in terms of its participation in CHD and PFO/Stroke.
Resumo:
Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.
Resumo:
Background Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Results Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals. A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia. The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. Conclusions The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.
Resumo:
Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.
Resumo:
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Resumo:
Forkhead box class O (FoxO) transcription factors are members of the forkhead box transcription factor superfamily, with orthologues in various species such as human, worm and fly. FoxO proteins are key regulators of growth, metabolism, stress resistance and, consequently, life span. FoxOs integrate signals from different pathways, e.g. the growth controlling Insulin-TOR signaling pathway and the stress induced JNK and Hippo signaling pathways. FoxO proteins have evolved to guide the cellular response to varying energy and stress conditions by inducing the expression of genes involved in the regulation of growth and metabolism. This work has aimed to deepen the understanding of how FoxO executes its biological functions. A particular emphasis has been laid to its role in growth control. Specifically, evidence is presented indicating that FoxO restricts tissue growth in a situation when TOR signaling is high. This finding can have implications in a human condition called Tuberous sclerosis, manifested by multiple benign tumors. Further, it is shown that FoxO directly binds to the promoter and regulates the expression of a Drosophila Adenylate cyclase gene, ac76e, which in turn modulates the fly s development and growth systemically. These results strengthen FoxOs position among central size regulators as it is able to operate at the level of individual cells as well as in the whole organism. Finally, an attempt to reveal the regulatory network upstream of FoxO has been carried out. Several putative FoxO activity regulators were identified in an RNAi screen of Drosophila kinases and phosphatases. The results underscore that FoxO is regulated through an elaborate network, ensuring the correct execution of key cellular processes in metabolism and response to stress. Overall, the evidence provided in this study strengthens our view of FoxO as a key integrator of growth and stress signals.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.