992 resultados para Transcript analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing offers an unprecedented opportunity to jointly analyze cellular and viral transcriptional activity without prerequisite knowledge of the nature of the transcripts. SupT1 cells were infected with a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped HIV vector. At 24 h postinfection, both cellular and viral transcriptomes were analyzed by serial analysis of gene expression followed by high-throughput sequencing (SAGE-Seq). Read mapping resulted in 33 to 44 million tags aligning with the human transcriptome and 0.23 to 0.25 million tags aligning with the genome of the HIV-1 vector. Thus, at peak infection, 1 transcript in 143 is of viral origin (0.7%), including a small component of antisense viral transcription. Of the detected cellular transcripts, 826 (2.3%) were differentially expressed between mock- and HIV-infected samples. The approach also assessed whether HIV-1 infection modulates the expression of repetitive elements or endogenous retroviruses. We observed very active transcription of these elements, with 1 transcript in 237 being of such origin, corresponding on average to 123,123 reads in mock-infected samples (0.40%) and 129,149 reads in HIV-1-infected samples (0.45%) mapping to the genomic Repbase repository. This analysis highlights key details in the generation and interpretation of high-throughput data in the setting of HIV-1 cellular infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease in which increased apoptosis and decreased apoptotic cells removal has been described as most relevant in the pathogenesis. Long-chain acyl-coenzyme A synthetases (ACSLs) have been involved in the immunological dysfunction of mouse models of lupus-like autoimmunity and apoptosis in different in vitro cell systems. The aim of this work was to assess among the ACSL isoforms the involvement of ACSL2, ACSL4 and ACSL5 in SLE pathogenesis. FINDINGS: With this end, we determined the ACSL2, ACSL4 and ACSL5 transcript levels in peripheral blood mononuclear cells (PBMCs) of 45 SLE patients and 49 healthy controls by quantitative real time-PCR (q-PCR). We found that patients with SLE had higher ACSL5 transcript levels than healthy controls [median (range), healthy controls =16.5 (12.3-18.0) vs. SLE = 26.5 (17.8-41.7), P = 3.9x10 E-5] but no differences were found for ACSL2 and ACSL4. In in vitro experiments, ACSL5 mRNA expression was greatly increased when inducing apoptosis in Jurkat T cells and PBMCs by Phorbol-Myristate-Acetate plus Ionomycin (PMA+Io). On the other hand, short interference RNA (siRNA)-mediated silencing of ACSL5 decreased induced apoptosis in Jurkat T cells up to the control levels as well as decreased mRNA expression of FAS, FASLG and TNF. CONCLUSIONS: These findings indicate that ACSL5 may play a role in the apoptosis that takes place in SLE. Our results point to ACSL5 as a potential novel functional marker of pathogenesis and a possible therapeutic target in SLE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the high prevalence of colon cancer in the world and the great interest in targeted anti-cancer therapy, only few tumor-specific gene products have been identified that could serve as targets for the immunological treatment of colorectal cancers. The aim of our study was therefore to identify frequently expressed colon cancer-specific antigens. We performed a large-scale analysis of genes expressed in normal colon and colon cancer tissues isolated from colorectal cancer patients using massively parallel signal sequencing (MPSS). Candidates were additionally subjected to experimental evaluation by semi-quantitative RT-PCR on a cohort of colorectal cancer patients. From a pool of more than 6000 genes identified unambiguously in the analysis, we found 2124 genes that were selectively expressed in colon cancer tissue and 147 genes that were differentially expressed to a significant degree between normal and cancer cells. Differential expression of many genes was confirmed by RT-PCR on a cohort of patients. Despite the fact that deregulated genes were involved in many different cellular pathways, we found that genes expressed in the extracellular space were significantly over-represented in colorectal cancer. Strikingly, we identified a transcript from a chromosome X-linked member of the human endogenous retrovirus (HERV) H family that was frequently and selectively expressed in colon cancer but not in normal tissues. Our data suggest that this sequence should be considered as a target of immunological interventions against colorectal cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Les jasmonates (JA), une famille d'hor1none végétale, jouent un rôle central dans la réponse à la blessure, et aux attaques d'insectes et de pathogènes. Les JA sont principalement dérivés d'un acide gras, l'acide linolénique. L'addition par une lipoxygénase d'une molécule d'oxygène à l'acide linolénique initie la synthèse de JA. Cependant les mécanismes régulant l'activation de la biosynthèse de JA ne sont pas encore connus. C'est pour cette raison que dans ce travail, nous avons caractérisé chez Arabidopsis thaliana (l'Arabette des Dames) un mutant fou2 dont l'activité lipoxygénase est plus élevée que celle d'une plante sauvage. Les niveaux de JA sont constitutivement plus élevés et l'activation de la synthèse de JA après blessure est fortement plus induite chez fou2 que chez le type sauvage. En outre, fou2 est plus résistant au pathogène Botrytis cinerea et à la chenille Spodoptera littoralis. Afin de comprendre quel mécanisme chez fou2 génére ce phénotype, nous avons cloné le gène responsable du phénotype de fou2. Le mutant fou2 porte une mutation dans le gène d'un canal à deux pores transportant probablement du potassium, du lumen de la vacuole végétale vers le compartiment cytosolique. L'analyse du protéome de fou2 a permis d'identifier une expression plus élevée de sept protéines régulées par les JA ou le stress. La découverte de l'implication d'un canal dans le phénotype de fou2 renforce l'hypothèse que les flux de cations pourraient être impliqués dans les étapes précoces de la synthèse des JA. Nous avons également étudié le protéome et la physiologie d'une feuille blessée, Pour évaluer les changements d'expression protéique en réponse à la blessure et contrôlés par les JA, nous avons quantifié l'expression de 5937 protéines chez une plante d'Arabidopsis sauvage et chez un mutant incapable de synthétiser des JA. Parmi ces 5937 protéines, nous avons identifié 99 protéines régulées par la blessure chez le type sauvage. Nous avons observé pour 65% des protéines dont l'expression protéique changeait après blessure une bonne corrélation entre la quantité de transcrits et de protéines. Plusieurs enzymes de la voie des chorismates impliquées dans la biosynthèse des acides aminés phénoliques étaient induites par les JA après blessure. Une quantification des acides aminés a montré que les niveaux d'acides aminés phénoliques augmentaient significativement après blessure. La blessure induisait aussi des changements dans l'expression de protéines impliquées dans la réponse au stress et particulièrement au stress oxydatif. Nous avons quantifié l'état réduit et oxydé du glutathion, un tripeptide qui, sous sa forme réduite, est l'antioxydant majeur des cellules. Nous avons trouvé une quantité significativement plus élevée de glutathion oxydé chez le type sauvage blessé que chez la plante aus blessée. Ce résultat suggère que la génération d'un stress oxydatif et la proportion relative de glutathions réduits et oxydés sont contrôlés par les JA après blessure. Abstract : Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri?unsaturated fatty acid a-linolenic-acid (18:3). Addition of an oxygen molecule to 18:3 by 13-lipoxygenases (13-LOX) initiates JA biosynthesis. Actually components regulating the activation of JA biosynthesis are poorly defined. Therefore we characterized in Arabidopsis thaliana the fatty acid Qxygenation upregulated 2 (fou2) mutant, which was previously isolated in a screen for mutants with an enhanced 13-LOX activity. As a consequence of this increased 13-LOX activity, JA levels in fou2 are higher than in wild type (WT) and wounding strongly increased JA biosynthesis compared to WT. fou2 was more resistant to the fungus Botrytis cinerea and the generalist caterpillar Spodaptera littomlis, The fou2 mutant carries a missense mutation in the Two Pore Channel 1 gene (TPCJ), which encodes a vacuolar cation channel transporting probably K* into the cytosol. Patchclamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA- inducible proteins. The discovery of the implication of a channel in the fou2 phenotype strenghtens the hypothesis that cation fluxes might be implicated in early steps of JA synthesis. We further concentrated on the proteome and leaf physiology in the region proximal to wounds in Arabidopsis using the WT and the aos JA-biosynthesis deficient mutant in order to find JA- induced proteins changes. We used two successive proteomic methods to assess protein changes in response to wounding Arabidopsis leaves, two dimensional electrophoresis (2DE) and linear trap quadrupole ion-trap mass spectrometry. In total 5937 proteins were quantified. We identified 99 wound-regulated proteins in the WT. Most these proteins were also wound-regulated at the transcript level showing a good correlation between transcript and protein abundance. We identified several wound-regulated enzymes involved in amino acid biosynthesis and confirmed this result by amino acid quantification. Proteins involved in stress reponses were upregulated, particularly in redox species regulation. We found a significantly higher quantity of oxidized glutathione in wounded WT relative to wounded aos leaves. This result suggests that levels of reduced glutathione are controlled by JA after wounding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HtrA surface protease is involved in the virulence of many pathogens, mainly by its role in stress resistance and bacterial survival. Staphylococcus aureus encodes two putative HtrA-like proteases, referred to as HtrA(1) and HtrA(2). To investigate the roles of HtrA proteins in S. aureus, we constructed htrA(1), htrA(2), and htrA(1) htrA(2) insertion mutants in two genetically different virulent strains, RN6390 and COL. In the RN6390 context, htrA(1) inactivation resulted in sensitivity to puromycin-induced stress. The RN6390 htrA(1) htrA(2) mutant was affected in the expression of several secreted virulence factors comprising the agr regulon. This observation was correlated with the disappearance of the agr RNA III transcript in the RN6390 htrA(1) htrA(2) mutant. The virulence of this mutant was diminished in a rat model of endocarditis. In the COL context, both HtrA(1) and HtrA(2) were essential for thermal stress survival. However, only HtrA(1) had a slight effect on exoprotein expression. The htrA mutations did not diminish the virulence of the COL strain in the rat model of endocarditis. Our results indicate that HtrA proteins have different roles in S. aureus according to the strain, probably depending on specific differences in the regulation of virulence factor and stress protein expression. We propose that HtrA(1) and HtrA(2) contribute to pathogenicity by controlling the production of certain extracellular factors that are crucial for bacterial dissemination, as revealed in the RN6390 background. We speculate that HtrA proteins act in the agr-dependent regulation pathway by assuring folding and/or maturation of some surface components of the agr system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Purpose: Gout is a common and excruciatingly painful inflammatory arthritis caused by hyperuricemia. In addition to various lifestyle risk factors, a substantial genetic predisposition to gout has long been recognized. The Global Urate Genetics Consortium (GUGC) has aimed to comprehensively investigate the genetics of serum uric acid and gout using data from _ 140,000 individuals of European-ancestry, 8,340 individuals of Indian ancestry, 5,820 African-Americans, and 15,286 Japanese. Methods: We performed discovery GWAS meta-analyses of serum urate levels (n_110,347 individuals) followed by replication analyses (n_32,813 different individuals). Our gout analysis involved 3,151 cases and 68,350 controls, including 1,036 incident gout cases that met the American College of Rheumatology Criteria. We also examined the association of gout with fractional excretion of uric acid (n_6,799). A weighted genetic urate score was constructed based on the number of risk alleles across urate-associated loci, and their association with the risk of gout was evaluated. Furthermore, we examined implicated transcript expression in cis (expression quantitative trait loci databases) for potential insights into the gene underlying the association signal. Finally, in order to further identify urate-associated genomic regions, we performed functional network analyses that incorporated prior knowledge on molecular interactions in which the gene products of implicated genes operate. Results: We identified and replicated 28 genome-wide significant loci in association with serum urate (P 5_10_8), including all previously-reported loci as well as 18 novel genetic loci. Unlike the majority of previouslyidentified loci, none of the novel loci appeared to be obvious candidates for urate transport. Rather, they were mapped to genes that encode for purine production, transcription, or growth factors with broad downstream responses. Besides SLC2A9 and ABCG2, no additional regions contained SNPs that differed significantly (P _ 5_10_8) between sexes. Urateincreasing alleles were associated with an increased risk of gout for all loci. The urate genetic risk score (ranging from 10 to 45) was significantly associated with an increased odds of prevalent gout (OR per unit increase, 1.11; 95% CI, 1.09-1.14) and incident gout (OR, 1.10; 95% CI, 1.08-1.13). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. Detailed characterization of the loci revealed associations with transcript expression and the fractional excretion of urate. Network analyses implicated the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. Conclusion: The novel genetic candidates identified in this urate/gout consortium study, the largest to date, highlight the importance of metabolic control of urate production and urate excretion. The modulation by signaling processes that influence metabolic pathways such as glycolysis and the pentose phosphate pathway appear to be central mechanisms underpinned by the novel GWAS candidates. These findings may have implications for further research into urate-lowering drugs to treat and prevent gout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: We investigated whether mRNA levels of E2F1, a key transcription factor involved in proliferation, differentiation and apoptosis, could be used as a surrogate marker for the determination of breast cancer outcome. METHODS: E2F1 and other proliferation markers were measured by quantitative RT-PCR in 317 primary breast cancer patients from the Stiftung Tumorbank Basel. Correlations to one another as well as to the estrogen receptor and ERBB2 status and clinical outcome were investigated. Results were validated and further compared with expression-based prognostic profiles using The Netherlands Cancer Institute microarray data set reported by Fan and colleagues. RESULTS: E2F1 mRNA expression levels correlated strongly with the expression of other proliferation markers, and low values were mainly found in estrogen receptor-positive and ERBB2-negative phenotypes. Patients with low E2F1-expressing tumors were associated with favorable outcome (hazard ratio = 4.3 (95% confidence interval = 1.8-9.9), P = 0.001). These results were consistent in univariate and multivariate Cox analyses, and were successfully validated in The Netherlands Cancer Institute data set. Furthermore, E2F1 expression levels correlated well with the 70-gene signature displaying the ability of selecting a common subset of patients at good prognosis. Breast cancer patients' outcome was comparably predictable by E2F1 levels, by the 70-gene signature, by the intrinsic subtype gene classification, by the wound response signature and by the recurrence score. CONCLUSION: Assessment of E2F1 at the mRNA level in primary breast cancer is a strong determinant of breast cancer patient outcome. E2F1 expression identified patients at low risk of metastasis irrespective of the estrogen receptor and ERBB2 status, and demonstrated similar prognostic performance to different gene expression-based predictors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.