986 resultados para Trans-acting Factors


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased serum interleukin-6 (IL-6) is a poor prognostic factor for patients with lymphoma. This may be related to the fact that IL-6 has been shown to be an autocrine and paracrine growth factor for lymphoma cells. We have investigated the regulation of IL-6 in two lymphoma cell lines which produce IL-6 as an autocrine growth factor. The cell lines, LY3 and LY12, were established from two patients with non-Hodgkin's lymphoma. One patient had diffuse large cell lymphoma (LY3), whereas the other had small noncleaved cell lymphoma (LY12). There was no rearrangement or amplification of the IL-6 gene, but we detected IL-1 alpha and TNF production in addition to IL-6. We investigated the effect of inhibitors of IL-1 and TNF on IL-6 production in LY3 and LY12. Our results show that IL-6 production is mainly secondary to endogenous IL-1 production in LY3 cells, however LY12 cells produce IL-6 via a different mechanism since neither anti-IL-1 nor anti-TNF significantly inhibited IL-6 production.^ Transfection of LY12 cells with wildtype and mutant IL-6 promoter-chloramphenicol acetyl transferase constructs, showed increased activity of a trans-acting factor that binds to the NF-kB motif. Therefore, we determined whether there were abnormalities in members of the NF-kB family of transcription factors, such as p65, p50, p52/lyt-10 or rel, which bind to kB motifs. We found increased expression of the p52/lyt-10 transcription factor and activation of the NF-kB pathway in LY12. However, expression of p50, p65 and rel was not increased in LY12 cells. Future investigations could be aimed at determining the effect of inhibitors of NF-kB on IL-6 production. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research characterized a serologically indistinguishable form of HLA-DR1 that: (1) cannot stimulate some DR1-restricted or specific T-lymphocyte clones; (2) displays an unusual electrophoretic pattern on two dimensional gels; and (3) is marked by a polymorphic restriction site of the alpha gene. Inefficient stimulation of some DR1-restricted clones was a property of DR1$\sp{+}$ cells that shared HLA-B14 on the same haplotype and/or were carriers of 21-hydroxylase (21-OH) deficiency. Nonclassical 21-OH deficiency frequently demonstrates genetic linkage with HLA-B14;DR1 haplotypes and associates with duplications of C4B and one 21-OH gene. Cells having both stimulatory (DR1$\sb{\rm n}$) and nonstimulatory (DR1$\sb{\rm x}$) parental haplotypes did not mediate proliferation of these clones. However, heterozygous DR1$\sb{\rm x}$, 2 and DR1$\sb{\rm x}$, 7 cells were efficient stimulators of DR2 and DR7 specific clones, respectively, suggesting that a trans acting factor may modify DR1 alleles or products to yield a dominant DR1$\sb{\rm x}$ phenotype. Incompetent stimulator populations did not secrete an intercellular soluble or contact dependent suppressor factor nor did they express interleukin-2 receptors competing for T-cell growth factors. Two dimensional gel analysis of anti-DR immunoprecipitates revealed, in addition to normal DR$\alpha$ and DR$\beta$ chains, a 50kD species from DR1$\sb{\rm x}$ but not from the majority of DR1$\sb{\rm n}$ or non-DR1 cells. The 50kD structure was stable under reducing conditions in SDS and urea, had antigenic homology with DR, and dissociated after boiling into 34kD and 28kD peptide chains apparently identical with DR$\alpha$ and DR$\beta$ as shown by limited digest peptide maps. N-linked glycosylation and sialation of DRgp50 appeared to be unchanged from normal DR$\alpha$ and DR$\beta$. Bg1II digestion and $DR\alpha$ probing of DR1$\sb{\rm x}$ genomic DNA revealed a 4.5kb fragment while DR1$\sb{\rm n}$ DNA yielded 3.8 and 0.76kb fragments; all restriction sites mapped to the 3$\sp\prime$ untranslated region of $DR\alpha$. Collectively, these data suggest that DRgp50 represents a novel combinatorial association between constitutive chains of DR that may interfere with or compete for normal T cell receptor recognition of DR1 as both an alloantigen and restricting element. Furthermore, extensive chromosomal abnormalities previously mapped to the class III region of B14;DR1 haplotypes may extend into the adjacent class II region with consequent intrusion on immune function. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spontaneously hypertensive rat (SHR) is a model of essential hypertension. During the early development of hypertension, the SHR demonstrates increased proximal tubule (PT) Na+ reabsorption. I hypothesized that the increased PT Na+ reabsorption exhibited by the young SHR was due to altered sub-cellular distribution of Na+, K +-ATPase compared to the normotensive Wistar Kyoto (WKY). The hypothesis is supported, herein, by observations of greater Na+, K +-ATPase α 1 abundance in PT plasma membrane and lower abundance in late endosomes of 4wk SHR despite no difference in total PT α 1 abundance. There is a greater amount of Ser-18 unphosphorylated α 1 in the 4wk SHR PT. Total PT Na+, K+-ATPase γ abundance is greater in SHR at 4wk and 16wk but γ abundance in plasma membrane is greater only at 4wk. The phosphatase, calcineurin, was chosen for study because it is involved in the stimulation of Na+, K +-ATPase. No difference in calcineurin coding sequence, expression, or activity was observed in SHR. Gene expression arrays were next used to find candidate genes involved in the regulation of Na+, K +-ATPase. The first candidate analyzed was soluble epoxide hydrolase (sEH). The gene encoding sEH (EPHX2) showed lower expression in SHR. There was also a reduction in sEH protein abundance but there was no correlation between protein abundance and blood pressure in F2 progeny. Two EPHX2 alleles were identified, an ancestral allele and a variant allele containing four polymorphisms. sEH activity was greater in animals carrying the variant allele but the inheritance of the variant allele did not correlate with blood pressure. Gene expression arrays also led to the examination of genes involved in redox balance/Na+, K+-ATPase regulation. A pattern of lower expression of genes involved in reactive radical detoxification in SHR was discerned. Six transcription factor binding sites were identified that occurred more often in these genes. Three transcription factors that bind to the HNF1 site were expressed at lower levels in SHR. This points to the HNF1 transcriptional complex as an important trans-acting regulator of a wide range of genes involved in altered redox balance in SHR. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals such as elevated CO2 , and the trans-acting positive regulator, AtxA. No specific binding of AtxA to the toxin gene promoters has been demonstrated and no sequence-based similarities are apparent in the promoter regions of toxin genes. We hypothesized that the toxin genes possess common structural features that are required for positive regulation. To test this hypothesis, I performed an extensive characterization of the toxin gene promoters. I determined the minimal sequences required for atxA-mediated toxin gene expression and compared these sequences for structural similarities. In silico modeling and in vitro experiments indicated significant curvature within these regions. Random mutagenesis revealed that point mutations associated with reduced transcriptional activity, mostly mapped to areas of high curvature. This work enabled the identification of two potential cis-acting elements implicated in AtxA-mediated regulation of the toxin genes. In addition to the growth condition requirements and AtxA, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. Here I report that toxin gene expression also requires sigH, a gene encoding the RNA polymerase sigma factor associated with development in B. subtilis. In the well-studied B. subtilis system, σH is part of a feedback control pathway that involves AbrB and the major response regulator of sporulation initiation, Spo0A. My data indicate that in B. anthracis, regulatory relationships exist between these developmental regulators and atxA . Interestingly, during growth in toxin-inducing conditions, sigH and abrB expression deviates from that described for B. subtilis, affecting expression of the atxA gene. These findings, combined with previous observations, suggest that the steady state level of atxA expression is critical for optimal toxin gene transcription. I propose a model whereby, under toxin-inducing conditions, control of toxin gene expression is fine-tuned by the independent effects of the developmental regulators on the expression of atxA . The growth condition-dependent changes in expression of these regulators may be crucial for the correct timing and uninterrupted expression of the toxin genes during infection. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intracellular distribution of RNAs depends on interactions of cis-acting nuclear export elements or nuclear retention elements with trans-acting nuclear transport or retention factors. To learn about the relationship between export and retention, we isolated RNAs that are exported from nuclei of Xenopus laevis oocytes even when most RNA export is blocked by an inhibitor of Ran-dependent nucleocytoplasmic transport, the Matrix protein of vesicular stomatitis virus. Export of the selected RNAs is saturable and specific. When present in chimeric RNAs, the selected sequences acted like nuclear export elements in promoting efficient export of RNAs that otherwise are not exported; the pathway used for export of these chimeric RNAs is that used for the selected RNAs alone. However, these chimeric RNAs, unlike the selected RNAs, were not exported in the presence of Matrix protein; thus, the nonselected sequences can cause retention of the selected RNA sequences under conditions of impaired nucleocytoplasmic transport. We propose that most RNAs are transiently immobilized in the nucleus and that release of these RNAs is an essential and early step in export. Release correlates with functional Ran-dependent transport, and the lack of export of chimeric RNAs may result from interference with the Ran system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Homologous recombination hotspots increase the frequency of recombination in nearby DNA. The M26 hotspot in the ade6 gene of Schizosaccharomyces pombe is a meiotic hotspot with a discrete, cis-acting nucleotide sequence (5′-ATGACGT-3′) defined by extensive mutagenesis. A heterodimeric M26 DNA binding protein, composed of subunits Mts1 and Mts2, has been identified and purified 40,000-fold. Cloning, disruption, and genetic analyses of the mts genes demonstrate that the Mts1/Mts2 heterodimer is essential for hotspot activity. This provides direct evidence that a specific trans-acting factor, binding to a cis-acting site with a unique nucleotide sequence, is required to activate this meiotic hotspot. Intriguingly, the Mts1/Mts2 protein subunits are identical to the recently described transcription factors Atf1 (Gad7) and Pcr1, which are required for a variety of stress responses. However, we report differential dependence on the Mts proteins for hotspot activation and stress response, suggesting that these proteins are multifunctional and have distinct activities. Furthermore, ade6 mRNA levels are equivalent in hotspot and nonhotspot meioses and do not change in mts mutants, indicating that hotspot activation is not a consequence of elevated transcription levels. These findings suggest an intimate but separable link between the regulation of transcription and meiotic recombination. Other studies have recently shown that the Mts1/Mts2 protein and M26 sites are involved in meiotic recombination elsewhere in the S. pombe genome, suggesting that these factors help regulate the timing and distribution of homologous recombination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants). Principal Findings Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. Conclusions/Significance Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway. © 2008 Federation of European Biochemical Societies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the possible role of a conserved cis-acting element, the cryptic AUG, present in the 5' UTR of coxsackievirus B3 (CVB3) RNA. CVB3 5' UTR contains multiple AUG codons upstream of the initiator AUG, which are not used for the initiation of translation. The 48S ribosomal assembly takes place upstream of the cryptic AUG. We show here that mutation in the cryptic AUG results in reduced efficiency of translation mediated by the CVB3 IRES; mutation also reduces the interaction of mutant IRES with a well characterized IRES trans-acting factor, the human La protein. Furthermore, partial silencing of the La gene showed a decrease in IRES activity in the case of both the wild-type and mutant. We have demonstrated here that the interaction of the 48S ribosomal complex with mutant RNA was weaker compared with wild-type RNA by ribosome assembly analysis. We have also investigated by chemical and enzymic modifications the possible alteration in secondary structure in the mutant RNA. Results suggest that the secondary structure of mutant RNA was only marginally altered. Additionally, we have demonstrated by generating compensatory and non-specific mutations the specific function of the cryptic AUG in internal initiation. Results suggest that the effect of the cryptic AUG is specific and translation could not be rescued. However, a possibility of tertiary interaction of the cryptic AUG with other cis-acting elements cannot be ruled out. Taken together, it appears that the integrity of the cryptic AUG is important for efficient translation initiation by the CVB3 IRES RNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.