957 resultados para Traffic Speed Change.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
The purpose of this study was to test the hypothesis that the potentiation of dynamic function was dependent upon both length change speed and direction. Mouse EDL was cycled in vitro (25º C) about optimal length (Lo) with constant peak strain (± 2.5% Lo) at 1.5, 3.3 and 6.9 Hz before and after a conditioning stimulus. A single pulse was applied during shortening or lengthening and peak dynamic (concentric or eccentric) forces were assessed at Lo. Stimulation increased peak concentric force at all frequencies (range: 19 ± 1 to 30 ± 2%) but this increase was proportional to shortening speed, as were the related changes to concentric work/power (range: -15 ± 1 to 39 ± 1 %). In contrast, stimulation did not increase eccentric force, work or power at any frequency. Thus, results reveal a unique hysteresis like effect for the potentiation of dynamic output wherein concentric and eccentric forces increase and decrease, respectively, with work cycle frequency.
Resumo:
The purpose of this study was to test the hypothesis that the potentiation of dynamic function was dependent upon both length change speed and direction. Mouse EDL was cycled in vitro (250 C) about optimal length (Lo) with constant peak strain (± 2.5% Lo) at 1.5,3.3 and 6.9 Hz before and after a conditioning stimulus. A single pulse was applied during shortening or lengthening and peak dynamic (concentric or eccentric) forces were assessed at Lo. Stimulation increased peak concentric force at all frequencies (range: 19±1 to 30 ± 2%) but this increase was proportional to shortening speed, as were the related changes to concentric work/power (range: -15 ± 1 to 39 ± 1 %). In contrast, stimulation did not increase eccentric force, work or power at any frequency. Thus, results reveal a unique hysteresis like effect for the potentiation of dynamic output wherein concentric and eccentric forces increase and decrease, respectively, with work cycle frequency.
Resumo:
There were 338 road fatalities on Irish roads in 2007. Research in 2007 by the Road Safety Authority in Ireland states that young male drivers (17 – 25 years) are seven times more likely to be killed on Irish roads than other road users. The car driver fatality rate was found to be approximately 10 times higher for young male drivers than for female drivers in 2000. Young male drivers in particular demonstrate a high proclivity for risky driving behaviours. These risky behaviours include drink driving, speeding, rug-driving and engaging in aggressive driving. Speed is the single largest contributing factor to road deaths in Ireland. Approximately 40% of fatal accidents are caused by excessive or inappropriate speed. This study focuses on how dangerous driving behaviours may be addressed through social marketing. This study analyses the appropriate level of fear that needs to be induced in order to change young male driving behaviour.
Resumo:
Il concetto di inflazione e' stato introdotto nei primi anni ’80 per risolvere alcuni problemi del modello cosmologico standard, quali quello dell’orizzonte e quello della piattezza. Le predizioni dei piu' semplici modelli inflazionari sono in buon accordo con le osservazioni cosmologiche piu'recenti, che confermano sezioni spaziali piatte e uno spettro di fluttuazioni primordiali con statistica vicina a quella gaussiana. I piu' recenti dati di Planck, pur in ottimo accordo con una semplice legge di potenza per lo spettro a scale k > 0.08 Mpc−1 , sembrano indicare possibili devi- azioni a scale maggiori, seppur non a un livello statisticamente significativo a causa della varianza cosmica. Queste deviazioni nello spettro possono essere spiegate da modelli inflazionari che includono una violazione della condizione di lento rotolamento (slow-roll ) e che hanno precise predizioni per lo spettro. Per uno dei primi modelli, caratterizzato da una discontinuita' nella derivata prima del potenziale proposto da Starobinsky, lo spettro ed il bispettro delle fluttuazioni primordiali sono noti analiticamente. In questa tesi estenderemo tale modello a termini cinetici non standard, calcolandone analiticamente il bispettro e confrontando i risultati ottenuti con quanto presente in letteratura. In particolare, l’introduzione di un termine cinetico non standard permettera' di ottenere una velocita' del suono per l’inflatone non banale, che consentira' di estendere i risultati noti, riguardanti il bispettro, per questo modello. Innanzitutto studieremo le correzioni al bispettro noto in letteratura dovute al fatto che in questo caso la velocita' del suono e' una funzione dipendente dal tempo; successivamente, cercheremo di calcolare analiticamente un ulteriore contributo al bispettro proporzionale alla derivata prima della velocita' del suono (che per il modello originale e' nullo).
Resumo:
This thesis examines two panel data sets of 48 states from 1981 to 2009 and utilizes ordinary least squares (OLS) and fixed effects models to explore the relationship between rural Interstate speed limits and fatality rates and whether rural Interstate speed limits affect non-Interstate safety. Models provide evidence that rural Interstate speed limits higher than 55 MPH lead to higher fatality rates on rural Interstates though this effect is somewhat tempered by reductions in fatality rates for roads other than rural Interstates. These results provide some but not unanimous support for the traffic diversion hypothesis that rural Interstate speed limit increases lead to decreases in fatality rates of other roads. To the author’s knowledge, this paper is the first econometric study to differentiate between the effects of 70 MPH speed limits and speed limits above 70 MPH on fatality rates using a multi-state data set. Considering both rural Interstates and other roads, rural Interstate speed limit increases above 55 MPH are responsible for 39,700 net fatalities, 4.1 percent of total fatalities from 1987, the year limits were first raised, to 2009.
Resumo:
The traditional ballast track structures are still being used in high speed railways lines with success, however technical problems or performance features have led to non-ballast track solution in some cases. A considerable maintenance work is needed for ballasted tracks due to the track deterioration. Therefore it is very important to understand the mechanism of track deterioration and to predict the track settlement or track irregularity growth rate in order to reduce track maintenance costs and enable new track structures to be designed. The objective of this work is to develop the most adequate and efficient models for calculation of dynamic traffic load effects on railways track infrastructure, and then evaluate the dynamic effect on the ballast track settlement, using a ballast track settlement prediction model, which consists of the vehicle/track dynamic model previously selected and a track settlement law. The calculations are based on dynamic finite element models with direct time integration, contact between wheel and rail and interaction with railway cars. A initial irregularity profile is used in the prediction model. The track settlement law is considered to be a function of number of loading cycles and the magnitude of the loading, which represents the long-term behavior of ballast settlement. The results obtained include the track irregularity growth and the contact force in the final interaction of numerical simulation
Resumo:
This paper reports the studies carried out to develop and calibrate the optimal models for the objectives of this work. In particular, quarter bogie model for vehicle, rail-wheel contact with Lagrangian multiplier method, 2D spatial discretization were selected as the optimal decisions. Furthermore, the 3D model of coupled vehicle-track also has been developed to contrast the results obtained in the 2D model. The calculations were carried out in the time domain and envelopes of relevant results were obtained for several track profiles and speed ranges. Distributed elevation irregularities were generated based on power spectral density (PSD) distributions. The results obtained include the wheel-rail contact forces, forces transmitted to the bogie by primary suspension. The latter loads are relevant for the purpose of evaluating the performance of the infrastructure
Resumo:
The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure is evaluated taking into account models with different degree of detail. In particular, we have studied this matter from a two-dimensional (2D) finite element model to a fully coupled three-dimensional (3D) multi-body finite element model. The vehicle and track are coupled via a non-linear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between wheel and rail. Distributed elevation irregularities are generated based on power spectral density (PSD) distributions which are taken into account for the interaction. The numerical simulations are performed in the time domain, using a direct integration method for solving the transient problem due to the contact nonlinearities. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete 2D models and continuum 3D models, as wheel as assessing the validity of evaluating the dynamic loading on the track with simplified 2D models
Resumo:
The dynamic effects of high-speed trains on viaducts are important issues for the design of the structures, as well as for determining safe running conditions of trains. In this work we start by reviewing the relevance of some basic moving load models for the dynamic action of vertical traffic loads. The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models and consideration of wheel to rail contact. We describe here a fully nonlinear coupled model, formulated in absolute coordinates and incorporated into a commercial finite element framework. An application example is presented for a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.