899 resultados para Total Hip Prosthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We retrieved synovial tissue and fluid samples from patients undergoing primary total hip replacement (THR) (n 15), revision of aseptically loose THR (n 12), primary total knee replacement (TKR) (n 13) and revision of aseptically loose TKR (n 6). Several histological parameters were assessed on a relative scale of 1-4. Primary TJRs were clinically evaluated for degree of osteoarthrosis. Revision TJRs were assessed for migration of the implant, gross loosening and the degree of radiolucency. Cytokine levels in synovial fluid were determined with ELISA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main mode of failure of the acetabular component in total hip arthroplasty is aseptic loosening. Successive generations of cementation techniques have evolved to alleviate this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox(R) forte and Bioloxl(R) delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce '3-body' abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 mu m alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the '3-body' abrasive wear mechanisms is discussed and the effect of material properties compared. (C) 2009 Elsevier B.V. All rights reserved.