960 resultados para Tip-enhanced Raman scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a Raman-scattering study of the phase transitions in the PbZr1-xTixO3 systems around the morphotropic phase boundary over a wide temperature range. The boundary between rhombohedral and monoclinic phases was found to be a quasivertical line between x = 0.46 and x = 0.47. We also studied the monoclinic-tetragonal phase boundary and our spectroscopic results agree very well with those reported by using x-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2 (1-x) - TiO2 (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 μm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900°C, used to fully densify the xerogels, produce nucleation of TiO2 nanocrystals even for the lowest TiO2 content. The nucleation of TiO2 nanocrystals and their growth by thermal annealing up to 1300°C were studied by waveguide Raman spectroscopy, for the SiO2 (0.8) - TiO2 (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low. frequency region (5-50 cm-1) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear CW pump broadening over non-standard transmission fibre is used for the first time to achieve improved gain flatness in a single-pump broadband Raman amplifier. As an illustration of the benefits that can be obtained from this approach, a threefold increase in the bandwidth for 0.1 dB gain variation is reported when the broadened pump is used to produce 9.2 dB on-off gain over 25 km LEAF fibre. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear CW pump broadening over non-standard transmission fiber is used for the first time to achieve superior gain variation performance in a single-pump broadband Raman amplifier. A threefold increase in the bandwidth for 0.1 dB gain variation is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. ^ The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. ^ In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. ^ This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed. The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples utilizing surface-enhanced Raman spectroscopy (SERS), which has previously been shown be capable of to detect trace quantities of pharmaceutical compounds in aqueous solutions. Surface enhanced Raman spectroscopy has the advantage of overcoming the low sensitivity and fluorescence effects seen with conventional Raman spectroscopy. The spectra are obtained by applying an analyte onto a SERS-active metal substrate such as colloidal metal particles. SERS signals can be further increased with the addition of aggregate solutions. These agents cause the nanoparticles to amass and form hot-spots which increase the signal intensity. In this work, the colloidal particles are spherical gold nanoparticles in aqueous solution with an average size of approximately 30 nm. The optimum aggregating agent for the detection of benzodiazepines was determined to be 16.7 mM MgCl2, providing the highest signal intensities at the lowest drug concentrations with limits of detection between 0.5 and 127 ng/mL. A supported liquid extraction technique was utilized as a rapid clean extraction for benzodiazepines from urine at a pH of 5.0, allowing for clean extraction with limits of detection between 6 and 640 ng/mL. It was shown that at this pH other drugs that are prevalent in urine samples can be removed providing the selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than twenty minutes), sensitive, and specific detection of benzodiazepines at low concentrations in urine. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these "Poly-SERS" films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of seized "legal high'' samples and pure novel psychoactive substances have been examined by surface-enhanced Raman spectroscopy using polymer-stabilized Ag nanoparticle (Poly-SERS) films. The films both quenched fluorescence in bulk samples and allowed identification of mu g quantities of drugs collected with wet swabs from contaminated surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.