974 resultados para Time-Resolved EPR Photosynthetic Reaction Centers
Resumo:
RESUMO:As terapias biológicas revolucionaram o tratamento das doenças autoimunes nos últimos anos. Tipicamente têm como alvos mediadores importantes no mecanismo das doenças. Os antagonistas do fator de necrose tumoral-α (TNF-α) são um grupo de agentes biológicos muito prescrito, pois estão indicados no tratamento de doenças imuno-mediadas comuns, tais como artrite reumatoide, artrite idiopática juvenil, artrite psoriática, espondilite anquilosante, doença de Crohn e colite ulcerosa. Com o uso frequente de inibidores do TNF-α, tem-se tornado evidente que estes agentes têm um potencial imunogénico importante, que pode comprometer o prognóstico a longo prazo dos doentes cronicamente tratados. A produção de anticorpos anti-fármaco parece causar falência terapêutica secundária em muitos doentes. Um dos efeitos dos anticorpos anti-fármaco é o aumento da eliminação do fármaco. A eliminação do fármaco, por sua vez, varia entre indivíduos, refletindo diferentes perfis farmacocinéticos. A determinação dos níveis séricos mínimos do agente anti-TNF-α é assim muito informativa e pode auxiliar nas decisões terapêuticas. Contudo, os testes imunológicos para determinar as concentrações séricas do fármaco não estão facilmente disponíveis na prática clínica. De forma a investigar uma nova técnica potencialmente fidedigna e prática para a deteção e quantificação dos agentes biológicos anti-TNF-α, foi testada a técnica por HTRF (homogeneous time-resolved fluorescence resonance energy transfer) para a determinação de concentrações séricas de infliximab. Apesar de apresentar algumas limitações relacionadas com as condições de leitura da fluorescência, esta técnica provou obter resultados próximos das concentrações obtidas por ELISA (enzyme-linked immunosorbent assay) bridging. Adicionalmente, tem a vantagem de ser de execução muito mais fácil e rápida. Deste modo, a técnica por HTRF poderá ser otimizada e tornar-se uma valiosa ferramenta laboratorial para orientar as decisões terapêuticas em doentes autoimunes com falência da terapêutica anti-TNF-α.--------- ABSTRACT: Biologic therapies revolutionized the treatment of autoimmune diseases in the last years. Typically, they target important disease mediators. Tumor necrosis factor-alpha (TNF-α) antagonists constitute a very prescribed group of biologic agents as they are indicated for the treatment of common immune-mediated diseases, such as rheumatoid arthritis, juvenile idiopathic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn’s disease and ulcerative colitis. With the increasing use of TNF-α inhibitors it has been noticed that they have an important immunogenic potential that can compromise long-term outcomes in chronically treated patients. The production of anti-drug antibodies seems to cause secondary therapeutic failure in many patients. One of the effects of anti-drug antibodies is the enhancement of drug clearance. Drug clearance, in turn, varies among individuals, reflecting different pharmacokinetic profiles. Determination of serum anti-TNF-α drug trough levels is though very informative and could support treatment decisions. However, immunologic assays to determine drug serum concentrations are not readily available in clinical practice. In order to investigate a potentially reliable and practical new technique for detection and quantification of anti-TNF-α biologic agents, homogeneous time-resolved fluorescence resonance energy transfer (HTRF) technique was tested for determination of serum infliximab concentrations. Although presenting some limitations related with fluorescence reading conditions, this technique proved to give results close to the concentrations obtained by the widely used bridging enzyme-linked immunosorbent assay (ELISA). In addition, it has the advantage of being much easier and faster to perform. Thus, HTRF technique can be optimized and become a valuable laboratorial tool to guide treatment decisions in autoimmune patients with anti-TNF-α therapy failure.
Resumo:
When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
Granitic and mafic magma pulses were sequentially accreted in the spectacularly exposed shallow crustal Torres del Paine laccolith, in southern Patagonia. This 12.5 Ma pluton forms a composite intrusion with a subvertical feeding system in the west and a laccolith in the east. A key unknown in the formation of sill complexes is how individual magma pulses are assembled over time and the geometry and localization of their feeding system. High resolution zircon CA-ID-TIMS U-Pb dating shows that the laccolith grew first by under-accretion of granitic sills over 90 +/- 30 ka, linked to a `sheet-like' feeding system, followed by underplating of mafic sills after similar to 20 ka of quiescence. In the mafic sills complex, individual sills were injected by over-accretion during 41 +/- 11 ka. Our data show that successive granitic and mafic magmas emplacement generated a volume of similar to 88 km(3) in 162 +/- 11 ka. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
PDMS-based microfluidic devices combined with lanthanide-based immunocomplexes have been successfully tested for the multiplex detection of biomarkers on cancerous tissues, revealing an enhanced sensitivity compared to classical organic dyes.
Resumo:
Time-resolved imaging is carried out to study the dynamics of the laser-induced forward transfer of an aqueous solution at different laser fluences. The transfer mechanisms are elucidated, and directly correlated with the material deposited at the analyzed irradiation conditions. It is found that there exists a fluence range in which regular and well-defined droplets are deposited. In this case, laser pulse energy absorption results in the formation of a plasma, which expansion originates a cavitation bubble in the liquid. After the further expansion and collapse of the bubble, a long and uniform jet is developed, which advances at a constant velocity until it reaches the receptor substrate. On the other hand, for lower fluences no material is deposited. In this case, although a jet can be also generated, it recoils before reaching the substrate. For higher fluences, splashing is observed on the receptor substrate due to the bursting of the cavitation bubble. Finally, a discussion of the possible mechanisms which lead to such singular dynamics is also provided.
Resumo:
A total of 49 wastewater samples from 23 different wastewater treatment plants (WWTPs) were analyzed using real-time quantitative polymerase chain reaction for the presence and quantity of thermotolerant campylobacters. Thermotolerant campylobacters were detected in 87.5% (21/24) and 64% (16/25) of untreated and treated wastewater samples, respectively. Their concentration was sufficiently high to be quantified in 20.4% (10/49) of the samples. In these samples, the concentration ranged from 68 000 to 2292 000 cells/L in untreated wastewater and from 10 800 to 28 000 cells/L in treated water. We conclude that thermotolerant campylobacters present a health hazard for workers at WWTPs in Switzerland. [Authors]
Resumo:
Time-resolved measurements of tissue autofluorescence (AF) excited at 405 nm were carried out with an optical-fiber-based spectrometer in the bronchi of 11 patients. The objectives consisted of assessing the lifetime as a new tumor/normal (T/N) tissue contrast parameter and trying to explain the origin of the contrasts observed when using AF-based cancer detection imaging systems. No significant change in the AF lifetimes was found. AF bronchoscopy performed in parallel with an imaging device revealed both intensity and spectral contrasts. Our results suggest that the spectral contrast might be due to an enhanced blood concentration just below the epithelial layers of the lesion. The intensity contrast probably results from the thickening of the epithelium in the lesions. The absence of T/N lifetime contrast indicates that the quenching is not at the origin of the fluorescence intensity and spectral contrasts. These lifetimes (6.9 ns, 2.0 ns, and 0.2 ns) were consistent for all the examined sites. The fact that these lifetimes are the same for different emission domains ranging between 430 and 680 nm indicates that there is probably only one dominant fluorophore involved. The measured lifetimes suggest that this fluorophore is elastin.
Resumo:
We study how the combination of long and short laser pulses can be used to induce torsion in an axially chiral biphenyl derivative (3,5-difluoro-3 ,5 -dibromo-4 -cyanobiphenyl). A long, with respect to the molecular rotational periods, elliptically polarized laser pulse produces 3D alignment of the molecules, and a linearly polarized short pulse initiates torsion about the stereogenic axis. The torsional motion is monitored in real-time by measuring the dihedral angle using femtosecond time-resolved Coulomb explosion imaging. Within the first 4 picoseconds (ps), torsion occurs with a period of 1.25 ps and an amplitude of 3◦ in excellent agreement with theoretical calculations. At larger times, the quantum states of the molecules describing the torsional motion dephase and an almost isotropic distribution of the dihedral angle is measured.We demonstrate an original application of covariance analysis of two-dimensional ion images to reveal strong correlations between specific ejected ionic fragments from Coulomb explosion. This technique strengthens our interpretation of the experimental data
Resumo:
This Master's thesis is devoted to semiconductor samples study using time-resolved photoluminescence. This method allows investigating recombination in semiconductor samples in order to develop quality of optoelectronic device. An additional goal was the method accommodation for low-energy-gap materials. The first chapter gives a brief intercourse into the basis of semiconductor physics. The key features of the investigated structures are noted. The usage area of the results covers saturable semiconductor absorber mirrors, disk lasers and vertical-external-cavity surface-emittinglasers. The experiment set-up is described in the second chapter. It is based on up-conversion procedure using a nonlinear crystal and involving the photoluminescent emission and the gate pulses. The limitation of the method was estimated. The first series of studied samples were grown at various temperatures and they suffered rapid thermal annealing. Further, a latticematched and metamorphically grown samples were compared. Time-resolved photoluminescence method was adapted for wavelengths up to 1.5 µm. The results allowed to specify the optimal substrate temperature for MBE process. It was found that the lattice-matched sample and the metamorphically grown sample had similar characteristics.
Resumo:
The rickettsia Anaplasma marginale is considered the main agent of bovine anaplasmosis. Due the nonspecific clinical signs of the anaplasmosis, the diagnosis of infection depends of laboratory confirmation. In recent years, molecular diagnostic methods have been used to detect A. marginale in cattle. However, the existence of a large number of assays of different sensitivity and cost makes the choice of an appropriate test difficult. In the present study, a real-time Polymerase Chain Reaction (PCR) based on the msp5 target gene was quantitatively assessed and compared to an end point PCR. Both reactions were subjected to sensitivity and specificity evaluation using plasmid DNA and samples from cattle experimentally infected with A. marginale. A comparative field trial of the tests was carried out using samples of cattle from a stable enzootic area for A. marginale. The real-time PCR showed a higher sensitivity than the end point PCR. This reaction (i.e. real-time PCR) was able to detect one copy of the msp5 gene in 100 ηg of plasmidial DNA, and more than 80% of its results were positive among experimentally infected animals seven days after infection. In addition, based on in silico analysis, the real-time PCR evaluated in the present study appears to be useful for the detection of A. ovis.
Resumo:
By the end of 2004, the Canadian swine population had experienced a severe 2 increase in the incidence of Porcine circovirus-associated disease (PCVAD), a problem that was 3 associated with the emergence of a new Porcine circovirus-2 genotype (PCV-2b), previously 4 unrecovered in North America. Thus it became important to develop a diagnostic tool that could 5 differentiate between the old and new circulating genotypes (PCV-2a and -2b, respectively). 6 Consequently, a multiplex real-time quantitative polymerase chain reaction (mrtqPCR) assay that 7 could sensitively and specifically identify and differentiate PCV-2 genotypes was developed. A 8 retrospective epidemiological survey that used the mrtqPCR assay was performed to determine if 9 cofactors could affect the risk of PCVAD. From 121 PCV-2–positive cases gathered for this 10 study, 4.13%, 92.56% and 3.31% were positive for PCV-2a, PCV-2b, and both genotypes, 11 respectively. In a data analysis using univariate logistic regressions, PCVAD compatible 12 (PCVAD/c) score was significantly associated with the presence of Porcine reproductive and 13 respiratory syndrome virus (PRRSV), PRRSV viral load, PCV-2 viral load, and PCV-2 14 immunohistochemistry (IHC) results. Polytomous logistic regression analysis revealed that 15 PCVAD/c score was affected by PCV-2 viral load (P = 0.0161) and IHC (P = 0.0128), but not by 16 the PRRSV variables (P > 0.9); suggesting that mrtqPCR in tissue is a reliable alternative to IHC. 17 Logistic regression analyses revealed that PCV-2 increased the odds ratio of isolating 2 major 18 swine pathogens of the respiratory tract, Actinobacillus pleuropneumoniae and Streptococcus 19 suis serotypes 1/2, 1, 2, 3, 4, and 7, which are serotypes commonly associated with clinical 20 diseases.
Resumo:
Time and space resolved studies of emission from CN molecules have been carried out in the plasma produced from graphite target by 1.06 urn pulses from a Q-switched Nd:YAG laser. Depending on the laser pulse energy, time of observation and position of the sampled volume of the plasma, the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as functions of distance, time, laser energy and ambient gas pressure. Evidence for nonlinear effects of the plasma medium such as self focusing which exhibits threshold-like behaviour are also obtained. Temperature and electron density of the plasma have been evaluated using the relative line intensities of successive ionization stages of carbon atom. These electron density measurements are verified by using Stark broadening method.