938 resultados para Time transfer
Resumo:
The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.
Resumo:
Published also as thesis (PH. D.) Columbia University.
Resumo:
Cover title.
Resumo:
Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.
Resumo:
In this letter, we consider wireless powered communication networks which could operate perpetually, as the base station (BS) broadcasts energy to the multiple energy harvesting (EH) information transmitters. These employ “harvest then transmit” mechanism, as they spend all of their energy harvested during the previous BS energy broadcast to transmit the information towards the BS. Assuming time division multiple access (TDMA), we propose a novel transmission scheme for jointly optimal allocation of the BS broadcasting power and time sharing among the wireless nodes, which maximizes the overall network throughput, under the constraint of average transmit power and maximum transmit power at the BS. The proposed scheme significantly outperforms “state of the art” schemes that employ only the optimal time allocation. If a single EH transmitter is considered, we generalize the optimal solutions for the case of fixed circuit power consumption, which refers to a much more practical scenario.
Resumo:
We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.
Resumo:
We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
The aim of this paper is to present new results on H-infinity control synthesis for time-delay linear systems. We extend the use of a finite order LTI system, called comparison system to H-infinity analysis and design. Differently from what can be viewed as a common feature of other control design methods available in the literature to date, the one presented here treats time-delay systems control design with classical numeric routines based on Riccati equations arisen from H-infinity theory. The proposed algorithm is simple, efficient and easy to implement. Some examples illustrating state and output feedback design are solved and discussed in order to put in evidence the most relevant characteristic of the theoretical results. Moreover, a practical application involving a 3-DOF networked control system is presented.
Resumo:
Effective knowledge transfer can prevent the reinvention of systems and ideas as well as the repetition of errors. Doing so will save substantial time, as well as contribute to better performance of projects and project-based organisations (PBOs). Despite the importance of knowledge, PBOs face serious barriers to the effective transfer of knowledge, while their characteristics, such as unique and innovative approaches taken during every project, mean they have much to gain from knowledge transfer. As each new project starts, there is the strong potential to reinvent the process, rather than utilise learning from previous projects. In fact, rework is one of the primary factors contributing to construction industry's poor performance and productivity. Current literature has identified several barriers to knowledge transfer in organisational settings in general, and not specifically PBOs. However, PBOs significantly differ from other types of organisations. PBOs operate mainly on temporary projects, where time is a crucial factor and people are more mobile than in other organisational settings. The aim of this research is to identify the key barriers that prevent effective knowledge transfer for PBOs, exclusively. Interviews with project managers and senior managers of PBOs complement the analysis of the literature and provide professional expertise. This research is crucial to gaining a better understanding of obstacles that hinder knowledge transfer in projects. The main contribution of this research is exclusive for PBO, list of key barriers that organisation and project managers need to consider to ensure effective knowledge transfer and better project management.
Resumo:
In this paper, we use time series analysis to evaluate predictive scenarios using search engine transactional logs. Our goal is to develop models for the analysis of searchers’ behaviors over time and investigate if time series analysis is a valid method for predicting relationships between searcher actions. Time series analysis is a method often used to understand the underlying characteristics of temporal data in order to make forecasts. In this study, we used a Web search engine transactional log and time series analysis to investigate users’ actions. We conducted our analysis in two phases. In the initial phase, we employed a basic analysis and found that 10% of searchers clicked on sponsored links. However, from 22:00 to 24:00, searchers almost exclusively clicked on the organic links, with almost no clicks on sponsored links. In the second and more extensive phase, we used a one-step prediction time series analysis method along with a transfer function method. The period rarely affects navigational and transactional queries, while rates for transactional queries vary during different periods. Our results show that the average length of a searcher session is approximately 2.9 interactions and that this average is consistent across time periods. Most importantly, our findings shows that searchers who submit the shortest queries (i.e., in number of terms) click on highest ranked results. We discuss implications, including predictive value, and future research.
Resumo:
A continuing challenge for pre-service teacher education is the learning transfer between the university based components and the practical school based components of their training. It is not clear how easily pre-service teachers can transfer university learnings into ‘in school’ practice. Similarly, it is not clear how easily knowledge learned in the school context can be disembedded from this particular context and understood more generally by the pre-service teacher. This paper examines the effect of a community of practice formed specifically to explore learning transfer via collaboration and professional enquiry, in ‘real time’, across the globe. “Activity Theory” (Engestrom, 1999) provided the theoretical framework through which the cognitive, physical and social processes involved could be understood. For the study, three activity systems formed community of practice network. The first activity system involved pre-service teachers at a large university in Queensland, Australia. The second activity system was introduced by the pre-service teachers and involved Year 12 students and teachers at a private secondary school also in Queensland, Australia. The third activity system involved university staff engineers at a large university in Pennsylvania, USA. The common object among the three activity systems was to explore the principles and applications of nanotechnology. The participants in the two Queensland activity systems, controlled laboratory equipment (a high powered Atomic Force Microscope – CPII) in Pennsylvania, USA, with the aim of investigating surface topography and the properties of nano particles. The pre-service teachers were to develop their remote ‘real time’ experience into school classroom tasks, implement these tasks, and later report their findings to other pre-service teachers in the university activity system. As an extension to the project, the pre-service teachers were invited to co-author papers relating to the project. Data were collected from (a) reflective journals; (b) participant field notes – a pre-service teacher initiative; (c) surveys – a pre-service teacher initiative; (d) lesson reflections and digital recordings – a pre-service teacher initiative; and (e) interviews with participants. The findings are reported in terms of the major themes: boundary crossing, the philosophy of teaching, and professional relationships The findings have implications for teacher education. The researchers feel that deliberate planning for networking between activity systems may well be a solution to the apparent theory/practice gap. Proximity of activity systems need not be a hindering issue.
Resumo:
Knowledge is a powerful organisational asset yet intangible and hard to manage, particularly in a project environment where there is a tendency to repeat the same mistakes rather than learn from previous project lessons. A lack of effective knowledge sharing across projects causes reinventions that are costly, and time consuming. Research on knowledge transfer has focused mainly on functional organisations and only recent attention has been directed towards knowledge transfer in projects. Furthermore, there is little evidence in the literature which examines trust in the knowledge transfer processes. This paper studies how the three types of trust - ability, benevolence, and integrity impact on knowledge transfer from the inter-project perspective. Three case studies investigated the matter. A detailed description of the work undertaken and an analysis of interviews with project professionals from large project-based organisations are presented in this paper. The key finding identifies the positive impact of ability trust on knowledge transfer. However, it was also found that perception on both integrity and benevolence varied across organisations suggesting that there can be a possible impact of organisational factors on the way trust is perceived in inter-project knowledge transfer. The paper concludes with a discussion and recommendations regarding the development of trust for inter-project environment.
Resumo:
Effective knowledge transfer between infrastructure projects plays a significant role in organisational success and discovery of new technologies, helping to achieve and maintain competitive advantage and, in effect, sustainable infrastructure development. Knowledge is recognised as an important organisational asset that adds value while being shared. To date, research on knowledge transfer has focused on traditional (functional) types of organisations. However, existing knowledge transfer approaches fail to address the issue of unique characteristics of project-based organisations, and the fact that functional and project-based organisations significantly differ in terms of structure, processes, and characteristics. Therefore, there is a need for a different, separate approach for managing knowledge in the project environment. The aim of this chapter is to highlight this need. An extensive literature review is provided on the areas of project management, knowledge management, and organisational structure; this is further supported by empirical evidence from interviews with project management practitioners. Conducting a ‘cross-field’ literature review provides a better understanding of the knowledge transfer mechanisms and its application to projects, and of the importance of knowledge transfer across projects. This research is crucial to gaining a better understanding of knowledge transfer in the project environment. It stresses that there are dissimilarities between project-based organisations and functional organisations in terms of organisational structure, duration of processes, viewpoint of time, response to change, and mobility of people, and that there is a need for a unique strategic approach in order to achieve effective transfer of knowledge. Furthermore, findings presented in this chapter reveal key elements that play an important role in across project knowledge transfer. These elements include: social communication, lessons learned databases, and project management offices.
Resumo:
The knowledge and skills of fashion and textiles design have traditionally been transferred through the indenture of an apprentice to a master. This relationship relied heavily on the transfer of explicit methods of design and making but also on the transfer of tacit knowledge, explained by Michael Polanyi as knowledge that cannot be explicitly known. By watching the master and emulating his efforts in the presence of his example, the apprentice unconsciously picks up the rules of the art, including those which are not explicitly known to the master himself (Polanyi, 1962 p.53). However, it has been almost half a century since Michael Polanyi defined the tacit dimension as a state in which “we can know more than we can tell” (Polanyi, 1967 p.4) at a time when the accepted means of ‘telling’ was through academic writing and publishing in hardcopy format. The idea that tacit knowledge transfer involves a one to one relationship between apprentice and master would appear to have dire consequences for a discipline, such as fashion design, where there is no such tradition of academic writing. This paper counters this point of view by providing examples of strategies currently being employed in online environments (principally through ‘craft’) and explains how these methods might prove useful to support tacit knowledge transfer in respect to academic research within the field of fashion design, and in the wider academic community involved in creative practice research. A summary of the implications of these new ideas for contemporary fashion research will conclude the paper.