967 resultados para Time Series Analisys
Resumo:
In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.
Resumo:
The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.
Resumo:
The correlation dimension D 2 and correlation entropy K 2 are both important quantifiers in nonlinear time series analysis. However, use of D 2 has been more common compared to K 2 as a discriminating measure. One reason for this is that D 2 is a static measure and can be easily evaluated from a time series. However, in many cases, especially those involving coloured noise, K 2 is regarded as a more useful measure. Here we present an efficient algorithmic scheme to compute K 2 directly from a time series data and show that K 2 can be used as a more effective measure compared to D 2 for analysing practical time series involving coloured noise.
Resumo:
In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate unconditional skewness. We consider modeling the unconditional mean and variance using models that respond nonlinearly or asymmetrically to shocks. We investigate the implications of these models on the third-moment structure of the marginal distribution as well as conditions under which the unconditional distribution exhibits skewness and nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions provided for all third-order moments and cross-moments. Finally, we introduce a new tool, the shock impact curve, for investigating the impact of shocks on the conditional mean squared error of return series.
Resumo:
The aim of the present study was to advance the methodology and use of time series analysis to quantify dynamic structures in psychophysiological processes and thereby to produce information on spontaneously coupled physiological responses and their behavioral and experiential correlates. Series of analyses using both simulated and empirical cardiac (IBI), electrodermal (EDA), and facial electromyographic (EMG) data indicated that, despite potential autocorrelated structures, smoothing increased the reliability of detecting response coupling from an interindividual distribution of intraindividual measures and that especially the measures of covariance produced accurate information on the extent of coupled responses. This methodology was applied to analyze spontaneously coupled IBI, EDA, and facial EMG responses and vagal activity in their relation to emotional experience and personality characteristics in a group of middle-aged men (n = 37) during the administration of the Rorschach testing protocol. The results revealed new characteristics in the relationship between phasic end-organ synchronization and vagal activity, on the one hand, and individual differences in emotional adjustment to novel situations on the other. Specifically, it appeared that the vagal system is intimately related to emotional and social responsivity. It was also found that the lack of spontaneously synchronized responses is related to decreased energetic arousal (e.g., depression, mood). These findings indicate that the present process analysis approach has many advantages for use in both experimental and applied research, and that it is a useful new paradigm in psychophysiological research. Keywords: Autonomic Nervous System; Emotion; Facial Electromyography; Individual Differences; Spontaneous Responses; Time Series Analysis; Vagal System
Resumo:
Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.
Resumo:
Given the growing importance of the Chinese tourist market to Australia, an understanding of Chinese tourists' arrival patterns is essential to accurate forecasting of future arrivals. Drawing on 25 years of records (1991-2015), this study developed a time-series model of monthly arrivals of Chinese tourists in Australia. The model reflects the exponentially increasing trend and strong seasonality of arrivals. Excellent results from validation of the model's forecasts endorsed this time-series model's potential in the policy prescription and management practice of Australian tourism industries.
Resumo:
Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.
Resumo:
In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.
Resumo:
Accurate and stable time series of geodetic parameters can be used to help in understanding the dynamic Earth and its response to global change. The Global Positioning System, GPS, has proven to be invaluable in modern geodynamic studies. In Fennoscandia the first GPS networks were set up in 1993. These networks form the basis of the national reference frames in the area, but they also provide long and important time series for crustal deformation studies. These time series can be used, for example, to better constrain the ice history of the last ice age and the Earth s structure, via existing glacial isostatic adjustment models. To improve the accuracy and stability of the GPS time series, the possible nuisance parameters and error sources need to be minimized. We have analysed GPS time series to study two phenomena. First, we study the refraction in the neutral atmosphere of the GPS signal, and, second, we study the surface loading of the crust by environmental factors, namely the non-tidal Baltic Sea, atmospheric load and varying continental water reservoirs. We studied the atmospheric effects on the GPS time series by comparing the standard method to slant delays derived from a regional numerical weather model. We have presented a method for correcting the atmospheric delays at the observational level. The results show that both standard atmosphere modelling and the atmospheric delays derived from a numerical weather model by ray-tracing provide a stable solution. The advantage of the latter is that the number of unknowns used in the computation decreases and thus, the computation may become faster and more robust. The computation can also be done with any processing software that allows the atmospheric correction to be turned off. The crustal deformation due to loading was computed by convolving Green s functions with surface load data, that is to say, global hydrology models, global numerical weather models and a local model for the Baltic Sea. The result was that the loading factors can be seen in the GPS coordinate time series. Reducing the computed deformation from the vertical time series of GPS coordinates reduces the scatter of the time series; however, the long term trends are not influenced. We show that global hydrology models and the local sea surface can explain up to 30% of the GPS time series variation. On the other hand atmospheric loading admittance in the GPS time series is low, and different hydrological surface load models could not be validated in the present study. In order to be used for GPS corrections in the future, both atmospheric loading and hydrological models need further analysis and improvements.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.