987 resultados para TiO2-ZrO2 composite
Resumo:
Substitutions of Ti and Cu in ZrO2.MgO (Z), cause transformation from monoclinic (m) to cubic (c) and tetragonal (t). According to the vacancy model and solid Solution formation models, neither CuO nor TiO2 cause zirconia stabilization, which derives front other phenomena. Data analysis by TMA using the CRH (constant rate of heating) method shows a solid state reaction of ZrO2.MgO.TiO2 (Z.TiO2) demonstrating a dominant mechanism of volume diffusion (n = 1). However, the sintering of ZrO2.MgO.CuO (Z.CuO) shows a viscous flow mechanism (n = 0), a similar phenomena to that of by sintering of glass. Transformations, such as: CuO to Cu2O at 1000 degreesC, ZrO2 (m) to ZrO2 (t) at 1100 degreesC and Cu2O (s) to Cu2O (l) at 1230 degreesC cause successive rearrangements of microstructure inside of region I (sintering process) and lead to interpretation errors when the Bannister equation is used. (C) 2003 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The purpose of this study was to evaluate the compressive strength and color changes of one composite resin modified by TiO2 nanoparticles and their distribution by SEM.
Resumo:
ZrO2-Al2O3 composite oxides and supported Ni catalysts were prepared, and characterized by N-2 adsorption/desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO2 content. The Ni catalyst supported ZrO2-Al2O3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.
Resumo:
Les matériaux composites sont utilisés dans beaucoup de domaines pour leurs propriétés mécaniques spécifiques, leur mise en forme facile et leur bas coût. Cependant, lorsque les composites pétro-sourcées sont en fin de vie, le traitement des déchets a un fort impact environnemental. C’est pour cette raison que les industriels se tournent vers des matériaux bio-sourcés. Ils souhaitent ainsi abaisser le coût des matières premières mais aussi se donner une image plus « verte » grâce à l’utilisation de matériaux renouvelables et/ou compostables. Le projet présenté s’inscrit dans dans cette optique où il est question d’élaborer de nouveaux composites à renfort et matrices bio-sourcés et tout particulièrement des composites fibre de lin/acide polylactique (PLA). Ces derniers sont généralement appelés bio-composites. L’originalité de cette étude réside dans le traitement des fibres de lin afin de les compatibilité avec la matrice PLA. Le traitement consiste au greffage de dioxyde de titane sur la surface de fibres de lin fonctionnalisée par oxydation au TEMPO. Ces fibres longues sont ensuite utilisées comme renfort sous forme de tissu unidirectionnel dans la matrice PLA. Le comportement mécanique en traction, flexion et la résistance à l’impact de ces biocomposites sont étudiés afin d’analyser l’influence du traitement des fibres sur leur performances.
Resumo:
The multiwall carbon nanotubes (MWCNTs)/titanium dioxide (P25) composite in different ratios was prepared using simple evaporation and drying process. The composite was characterized by Raman spectroscopy, X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of this composite was investigated using degradation of the Bismarck brown R dye (BBR). An optimal MWCNTs/TiO2 ratio of 0.5% (w/w) was found to achieve the maximum rate of BBR degradation. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO2. The enhancement in photocatalytic activity performance of the MWCNTs/P25 composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNTs act as a dispersing support to control the morphology of TiO2 particles in the MWCNTs/TiO2 composite.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
Despite a favourable morphology, anodized and ordered TiO2 nanotubes are incapable of showing electrochromic properties in comparison to many other metal oxide counterparts. To tackle this issue, MoO3 of 5 to 15 nm thickness was electrodeposited onto TiO2 nanotube arrays. A homogenous MoO3 coating was obtained and the crystal phase of the electrodeposited coating was determined to be α-MoO3. The electronic and optical augmentations of the MoO3 coated TiO2 platforms were evaluated through electrochromic measurements. The MoO3/TiO2 system showed a 4-fold increase in optical density over bare TiO2 when the thickness of the MoO3 coating was optimised. The enhancement was ascribed to (a) the α-MoO3 coating reducing the bandgap of the composite material, which shifted the band edge of the TiO2 platform, and subsequently increased the charge carrier transfer of the overall system and (b) the layered morphology of α-MoO3 that increased the intercalation probability and also provided direct pathways for charge carrier transfer.
Resumo:
Anatase TiO2 nanocrystals were painted on H-titanate nanofibers by using an aqueous solution of titanyl sulfate. The anatase nanocrystals were bonded solidly onto the titanate fibers through formation of coherent interfaces at which the oxygen atoms were shared by the nanocrystals and the fiber. This approach allowed us to create large anatase surfaces on the nanofibers, which are active in photocatalytic reactions. This method was also applied successfully to coat anatase nanocrystals on surfaces of fly ash and layered clay. The painted nanofibers exhibited a much higher catalytic activity for the photocatalytic degradation of sulforhodamine B and the selective oxidation of benzylamine to the corresponding imine (with a product selectivity >99%) under UV irradiation than both the parent H-titanate nanofibers and a commercial TiO2 powder, P25. We found that gold nanoparticles supported on H-titanate nanofibers showed no catalytic activity for the reduction of nitrobenzene to azoxybenzene, whereas the gold nanoparticles supported on the painted nanofibers and P25 could efficiently reduce nitrobenzene to azoxybenzene as the sole product under visible light irradiation. These results were different from those from the reduction on the gold nanoparticles photocatalyst on ZrO2, in which the azoxybenzene was the intermediate and converted to azobenzene quickly. Evidently, the support materials significantly affect the product selectivity of the nitrobenzene reduction. Finally, the new photocatalysts could be easily dispersed into and separated from a liquid because of their fibril morphology, which is an important advantage for practical applications.
Resumo:
Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.
Resumo:
One of the biggest challenges when considering polymer nanocomposites for electrical insulation applications lies in determining their electrical properties accurately, which in turn depend on several factors, primary being dispersion of particles in the polymer matrix. With this background, this paper reports an experimental study to understand the effects of different processing techniques on the dispersion of filler particles in the polymer matrix and their related effect on the dielectric properties of the composites. Polymer composite and nanocomposite samples for the study were prepared by mixing 10% by weight of commercially available TiO2 particles of two different sizes in epoxy using different processing methods. A considerable effect of the composite processing method could be seen in the dielectric properties of nanocomposites.
Resumo:
A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.
Resumo:
In situ formations of Al2O3 + ZrO2 + SiCW ternary composite powders have been obtained by carbothermal reduction of a mixture of Sillimanite. Kaolin and Zircon using two different carbon sources. Products formed were mixtures of alumina and zirconia along with silicon carbide in the form of whiskers. The effects of composition of the reactants, the role of fineness of the starting precursors and the nature of the carbon Source on the final product powder obtained are presented. XRD and SEM analyses indicate complete reaction of the precursors to yield Al2O3 + ZrO2 + SiCW as product powders, with the SiC having whisker morphology. It is also seen that zirconia could be stabilised to some extent in the tetragonal form without any stabilising agent by tailoring the starting materials and their composition. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Electroless Ni-Cu-P-ZRO(2) composite coating was successfully obtained on low carbon steel matrix by electroless plating technique. Coatings with different compositions were obtained by varying copper as ternary metal and nano sized zirconium oxide particles so as to obtain elevated corrosion resistant Ni-P coating. Microstructure, crystal structure and composition of deposits were analyzed by SEM, EDX and XRD techniques. The corrosion behavior of the deposits was studied by anodic polarization, Tafel plots and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The ZRO(2) incorporated Ni-P coating showed higher corrosion resistance than plain Ni-P. The introduction of copper metal into Ni-P-ZRO(2) enhanced the protection ability against corrosion. The influence of copper metal and nanoparticles on microhardness of coatings was evaluated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new two-step synthesis of ZrO2-MCM nanocomposites using the gel combustion technique was accomplished; the resulting material had a high-surface area and showed very high adsorption activity. The deposition of 25 nm ZrO2 particles over MCM was achieved using gel combustion technique with glycine as a fuel, and the formation of nanocomposites was confirmed using transmission electron microscopy. The composites were also characterized by XRD, SEM, FTIR and N2 adsorption-desorption analysis. The nanocomposites were tested for the adsorption of cationic dyes. High rates of adsorption and large dye uptake were observed over the nanocomposites. The rate of adsorption over the nanocomposites was higher than that observed for physical ZrO2-MCM mixtures and commercial activated carbon. The nanocomposite with 10 wt % ZrO2 showed the highest rate of adsorption owing to the synergistic effects of ZrO2 surface groups, smaller particle size, fine dispersion and high-surface area of the composite. (c) 2012 American Institute of Chemical Engineers AIChE J, 58: 29872996, 2012