939 resultados para Three-wave interaction
Resumo:
BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.
Resumo:
As digital systems move away from traditional desktop setups, new interaction paradigms are emerging that better integrate with users’ realworld surroundings, and better support users’ individual needs. While promising, these modern interaction paradigms also present new challenges, such as a lack of paradigm-specific tools to systematically evaluate and fully understand their use. This dissertation tackles this issue by framing empirical studies of three novel digital systems in embodied cognition – an exciting new perspective in cognitive science where the body and its interactions with the physical world take a central role in human cognition. This is achieved by first, focusing the design of all these systems on a contemporary interaction paradigm that emphasizes physical interaction on tangible interaction, a contemporary interaction paradigm; and second, by comprehensively studying user performance in these systems through a set of novel performance metrics grounded on epistemic actions, a relatively well established and studied construct in the literature on embodied cognition. The first system presented in this dissertation is an augmented Four-in-a-row board game. Three different versions of the game were developed, based on three different interaction paradigms (tangible, touch and mouse), and a repeated measures study involving 36 participants measured the occurrence of three simple epistemic actions across these three interfaces. The results highlight the relevance of epistemic actions in such a task and suggest that the different interaction paradigms afford instantiation of these actions in different ways. Additionally, the tangible version of the system supports the most rapid execution of these actions, providing novel quantitative insights into the real benefits of tangible systems. The second system presented in this dissertation is a tangible tabletop scheduling application. Two studies with single and paired users provide several insights into the impact of epistemic actions on the user experience when these are performed outside of a system’s sensing boundaries. These insights are clustered by the form, size and location of ideal interface areas for such offline epistemic actions to occur, as well as how can physical tokens be designed to better support them. Finally, and based on the results obtained to this point, the last study presented in this dissertation directly addresses the lack of empirical tools to formally evaluate tangible interaction. It presents a video-coding framework grounded on a systematic literature review of 78 papers, and evaluates its value as metric through a 60 participant study performed across three different research laboratories. The results highlight the usefulness and power of epistemic actions as a performance metric for tangible systems. In sum, through the use of such novel metrics in each of the three studies presented, this dissertation provides a better understanding of the real impact and benefits of designing and developing systems that feature tangible interaction.
Resumo:
Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.
Resumo:
We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.
Resumo:
We investigated the transition to wave turbulence in a spatially extended three-wave interacting model, where a spatially homogeneous state undergoing chaotic dynamics undergoes spatial mode excitation. The transition to this weakly turbulent state can be regarded as the loss of synchronization of chaos of mode oscillators describing the spatial dynamics.
Resumo:
In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu entwickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewendet. Die LIT-Methode ermoeglicht exakte Rechnungen durchzufuehren, ohne explizite Bestimmung der Endzustaende im Kontinuum. Das Problem wird auf die Loesung einer bindungzustandsaehnlichen Gleichung reduziert, bei der die Endzustandswechselwirkung vollstaendig beruecksichtigt wird. Die Loesung der LIT-Gleichung wird mit Hilfe einer Entwicklung nach hypersphaerischen harmonischen Funktionen durchgefuehrt, deren Konvergenz durch Anwendung einer effektiven Wechselwirkung im Rahmem des hypersphaerischen Formalismus (EIHH) beschleunigt wird. In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungsquerschnittes fuer Photoabsorption unterhalb der Pionproduktionsschwelle an 6Li, 6He und 7Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen NN-Wechselwirkungen durchgefuehrt, die die Tensor Kraft teilweise simulieren, da die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig reproduziert werden. Der Wirkungsquerschnitt fur Photoabsorption an 6Li zeigt nur eine Dipol-Riesenresonanz, waehrend 6He zwei unterschiedliche Piks aufweist, die dem Aufbruch vom Halo und vom Alpha-Core entsprechen. Der Vergleich mit experimentellen Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Uebereinstimmung wesentlich verbessert. Bei 7Li wird nur eine Dipol-Riesenresonanz gefunden, die gut mit den verfuegbaren experimentellen Daten uebereinstimmt. Bezueglich der Elektronenstreuung wird die Berechnung der longitudinalen und transversalen Antwortfunktionen von 4He im quasi-elastischen Bereich fuer mittlere Werte des Impulsuebertrages dargestellt. Fuer die Ladungs- und Stromoperatoren wird ein nichtrelativistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wechselwirkungen durchgefuert und ein eichinvarianter Strom wird durch die Einfuehrung eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf die transversalen Antwortfunktionen wird untersucht. Vorlaeufige Ergebnisse werden gezeigt und mit den verfuegbaren experimentellen Daten verglichen.
Resumo:
The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves
Resumo:
As digital systems move away from traditional desktop setups, new interaction paradigms are emerging that better integrate with users’ realworld surroundings, and better support users’ individual needs. While promising, these modern interaction paradigms also present new challenges, such as a lack of paradigm-specific tools to systematically evaluate and fully understand their use. This dissertation tackles this issue by framing empirical studies of three novel digital systems in embodied cognition – an exciting new perspective in cognitive science where the body and its interactions with the physical world take a central role in human cognition. This is achieved by first, focusing the design of all these systems on a contemporary interaction paradigm that emphasizes physical interaction on tangible interaction, a contemporary interaction paradigm; and second, by comprehensively studying user performance in these systems through a set of novel performance metrics grounded on epistemic actions, a relatively well established and studied construct in the literature on embodied cognition. The first system presented in this dissertation is an augmented Four-in-a-row board game. Three different versions of the game were developed, based on three different interaction paradigms (tangible, touch and mouse), and a repeated measures study involving 36 participants measured the occurrence of three simple epistemic actions across these three interfaces. The results highlight the relevance of epistemic actions in such a task and suggest that the different interaction paradigms afford instantiation of these actions in different ways. Additionally, the tangible version of the system supports the most rapid execution of these actions, providing novel quantitative insights into the real benefits of tangible systems. The second system presented in this dissertation is a tangible tabletop scheduling application. Two studies with single and paired users provide several insights into the impact of epistemic actions on the user experience when these are performed outside of a system’s sensing boundaries. These insights are clustered by the form, size and location of ideal interface areas for such offline epistemic actions to occur, as well as how can physical tokens be designed to better support them. Finally, and based on the results obtained to this point, the last study presented in this dissertation directly addresses the lack of empirical tools to formally evaluate tangible interaction. It presents a video-coding framework grounded on a systematic literature review of 78 papers, and evaluates its value as metric through a 60 participant study performed across three different research laboratories. The results highlight the usefulness and power of epistemic actions as a performance metric for tangible systems. In sum, through the use of such novel metrics in each of the three studies presented, this dissertation provides a better understanding of the real impact and benefits of designing and developing systems that feature tangible interaction.
Resumo:
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Resumo:
A pulse–pulse interaction that leads to rogue wave (RW) generation in lasers was previously attributed either to soliton–soliton or soliton–dispersive-wave interaction. The beating between polarization modes in the absence of a saturable absorber causes similar effects. Accounting for these polarization modes in a laser resonator is the purpose of the distributed vector model of laser resonators. Furthermore, high pump power, high amplitude, and short pulse duration are not necessary conditions to observe pulse attraction, repulsion, and collisions and the resonance exchange of energy between among them. The regimes of interest can be tuned just by changing the birefringence in the cavity with the pump power slightly higher than the laser threshold. This allows the observation of a wide range of RW patterns in the same experiment, as well as to classify them. The dynamics of the interaction between pulses leads us to the conclusion that all of these effects occur due to nonlinearity induced by the inverse population in the active fiber as well as an intrinsic nonlinearity in the passive part of the cavity. Most of the mechanisms of pulse–pulse interaction were found to be mutually exclusive. This means that all the observed RW patterns, namely, the “lonely,” “twins,” “three sisters,” and “cross,” are probably different cases of the same process.
Resumo:
Wave measurement is of vital importance for assessing the wave power resources and for developing wave energy devices, especially for the wave energy production and the survivability of the wave energy device. Wave buoys are one of the most popular measuring technologies developed and used for long-term wave measurements. In order to figure out whether the wave characteristics can be recorded by using the wave buoys accurately, an experimental study was carried out on the performance of three wave buoy models, viz two WaveScan buoys and one ODAS buoy, in a wave tank using the European FP7 MARINET facilities. This paper presents the test results in both time and frequency domains and the comparison between the wave buoys and wave gauge measurements. The analysis results reveal that for both regular and irregular waves, the WaveScan buoys have better performances than the ODAS buoy in terms of accuracy and the WaveScan buoys measurements have a very good correlation with those from the wave gauges.
Resumo:
The Galway Bay wave energy test site promises to be a vital resource for wave energy researchers and developers. As part of the development of this site, a floating power system is being developed to provide power and data acquisition capabilities, including its function as a local grid connection, allowing for the connection of up to three wave energy converter devices. This work shows results from scaled physical model testing and numerical modelling of the floating power system and an oscillating water column connected with an umbilical. Results from this study will be used to influence further scaled testing as well as the full scale design and build of the floating power system in Galway Bay.
Resumo:
Experiments with ultracold atoms in optical lattice have become a versatile testing ground to study diverse quantum many-body Hamiltonians. A single-band Bose-Hubbard (BH) Hamiltonian was first proposed to describe these systems in 1998 and its associated quantum phase-transition was subsequently observed in 2002. Over the years, there has been a rapid progress in experimental realizations of more complex lattice geometries, leading to more exotic BH Hamiltonians with contributions from excited bands, and modified tunneling and interaction energies. There has also been interesting theoretical insights and experimental studies on “un- conventional” Bose-Einstein condensates in optical lattices and predictions of rich orbital physics in higher bands. In this thesis, I present our results on several multi- band BH models and emergent quantum phenomena. In particular, I study optical lattices with two local minima per unit cell and show that the low energy states of a multi-band BH Hamiltonian with only pairwise interactions is equivalent to an effec- tive single-band Hamiltonian with strong three-body interactions. I also propose a second method to create three-body interactions in ultracold gases of bosonic atoms in a optical lattice. In this case, this is achieved by a careful cancellation of two contributions in the pair-wise interaction between the atoms, one proportional to the zero-energy scattering length and a second proportional to the effective range. I subsequently study the physics of Bose-Einstein condensation in the second band of a double-well 2D lattice and show that the collision aided decay rate of the con- densate to the ground band is smaller than the tunneling rate between neighboring unit cells. Finally, I propose a numerical method using the discrete variable repre- sentation for constructing real-valued Wannier functions localized in a unit cell for optical lattices. The developed numerical method is general and can be applied to a wide array of optical lattice geometries in one, two or three dimensions.