981 resultados para Third-order model
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.
Resumo:
Includes bibliographical references and index.
Resumo:
A novel fibre grating device is demonstrated with tuneable chromatic dispersion slope. The tuning range is 70 to 190 ps/nm and 0 to 25 ps/nm2 for the second and third order dispersion, respectively.
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.
Resumo:
We present a novel tunable dispersion compensator that can provide pure slope compensation. The approach uses two specially designed complex fiber Bragg gratings (FBGs) with reversely varied third-order group delay curves to generate the dispersion slope. The slope can be changed by adjusting the relative wavelength positions of the two FBGs. Several design examples of such complex gratings are presented and discussed. Experimentally, we achieve a dispersion slope tuning range of +/-650ps/nm2 with >0.9nm usable bandwidth.
Third-order intermodulation products generated on transmission through nonlinear radio-on-fibre link
Resumo:
Two-tone intermodulation tests were simulated for an amplitude modulated radio-on-fibre link including fibre dispersion, nonlinearity and loss. The third-order intercept results are presented for varying fibre lengths and optical transmission powers.
Resumo:
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Resumo:
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Resumo:
This research is based on the hypothesis that law and order model is displacing the procedura justice system in Spain. After a thorough review of the international literature, one can observe that the traditional structure of the penal system does not seem to be capable of containing the new forms of crime. The new penal model assumes that public opinion is alarmed and unwilling to understand rational approaches to crime, so it will be likely to accept measures aimed at calming the fear of crime, through extensive control policies and penal tools to manage uncivil behavior. Objectives and methodology A measuring instrument has been developed to confirm this hypothesis, consisting of ten features that characterize the law and order model. This instrument has been used to identify examples of its ten features in the rules and practices developed at each phase of the Spanish criminal justice system. The analysis has focused specifically on public discourse about delinquency, criminal policy decisions, legislative processes, police routines, judicial dynamics, and prison system practices. Main results The investigation has shown that there are many processes and practices indicating that the law and order model is consolidating itself in the Spanish penal system. Nevertheless this process has a different intensity at each phase, being stronger at the legislative stage and softer in the penitentiary enforcement phase. One of the main conclusions is, therefore, that the designed instrument is ideal for measuring the degree of penetration of the model throughout the system. Some of the most striking results of the reasearch will be presented at the conference. Finally, proposals arise that could prevent the new model is fully seated in our criminal justice system, finding that the trend toward more severe penalties shown already unsustainable.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Higher order cumulant analysis is applied to the blind equalization of linear time-invariant (LTI) nonminimum-phase channels. The channel model is moving-average based. To identify the moving average parameters of channels, a higher-order cumulant fitting approach is adopted in which a novel relay algorithm is proposed to obtain the global solution. In addition, the technique incorporates model order determination. The transmitted data are considered as independently identically distributed random variables over some discrete finite set (e.g., set {±1, ±3}). A transformation scheme is suggested so that third-order cumulant analysis can be applied to this type of data. Simulation examples verify the feasibility and potential of the algorithm. Performance is compared with that of the noncumulant-based Sato scheme in terms of the steady state MSE and convergence rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)