1000 resultados para Thermomechanical processing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rapid method has been developed to determine recrystallization kinetics of Nb microalloyed steels by interrupted hot torsion test. The softening behaviour was achieved as a function of different processing parameters. The method clearly identified three regions, where the strain dependency of the recrystallization rate varied. Firstly, at large strains the rate of recrystallization was not a function of strain; this is generally ascribed to metadynamic recrystallization. At lower strains the time to 50% recrystallization showed a power low relationship with strain, characteristic of static recrystallization. A further break point exists on the time for 50% softening curve when strain induced precipitation occurs in the material. The onset of strain induced precipitation was at strains below the strain to the peak stress at temperatures below 900°C. The experimental results were used to estimate the time for 50% softening and to anticipate the onset of the strain induced precipitation for the alloy of this study. Grain refinement of the recrystallized austenite continued to strains significantly beyond the peak stress and beyond the static to metadynamic recrystallization rate transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of additions of Nb, A1 and Mo to Fe-C-Mn-Si TRIP steels on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. Laboratory simulations of continuous cooling during TMP were performed using a quench deformation dilatometer, while laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. From this a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in these types of TRIP steels has been developed. All samples were characterised using optical microscopy and XRD. The relationships between the morphology of bainitic structure, volume fraction, stability of RA and mechanical properties were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (ε C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on ε C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced ε C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex multiphase microstructures were obtained in transformation induced plasticity C–Mn–Si–(Nb–Al–Mo) steels by simulated controlled thermomechanical processing. These microstructures were characterized using transmission electron microscopy, X-ray diffraction and three-dimensional atom probe tomography (APT), which was used to determine the partitioning of elements between different phases and microconstituents. The measured carbon concentration (not, vert, similar0.25 at%) in the ferrite of carbide-free bainite was higher than expected from para-equilibrium between the austenite and ferrite, while the concentrations of substitutional elements were the same as in the parent austenite suggesting that incomplete bainite transformation occurred. In contrast, the distribution of substitutional elements between the ferrite lath and austenite in carbide-containing bainite indicated a complete bainite reaction. The average carbon content in the retained austenite (3.2 ± 1.6 at%) was somewhat higher than the T0 limit. On the basis of the APT measured composition, the calculated Ms temperatures for retained austenite were above room temperature, indicating its low chemical stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic adjustment of ferrite grains formed during 'dynamic strain induced transformation (DSIT)' is an important feature of this mechanism that has not been addressed previously. A novel experimental method was applied to follow the effect of deformation at different stages on ferrite formed initially through DSIT. It is shown that while the continuous dynamic recrystallisation (CDRX) appears to be an acceptable mechanism for re-refinement of coarser grain size (i.e. dα>2dDSIT), it cannot explain the steady state grain size for finer ferrite grains (i.e. dα<2dDSIT). Other potential mechanisms involved in this phenomenon are examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated  thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The  results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current study, the role of dynamic strain induced transformation on ferrite grain refinement was investigated using different thermomechanical processing routes. A Ni-30Fe austenitic model alloy was also employed to study the evolution of the deformation structure under different deformation conditions. It was shown that the extreme refinement of ferrite is more likely due to the formation of extensive high angle intragranular defects in the austenite through deformation. Among the different thermomechanical parameters, the deformation temperature had a significant effect on the intragranular defect characteristics. There was a transition where the cell dislocation structure changed to laminar microband structures with a decrease in the deformation temperature. Moreover, the ultrafine grained structure was also successfully produced through static transformation using warm deformation process; in other words, concurrent deformation and transformation are not necessary for ultrafine ferrite formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fraction of polygonal fenite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behavior as a function of plastic strain. X-ray analysis was used to characterize the volume fraction and carbon content of retained austenite. TEM and heat-tinting were utilized to analyze the effect of bainitic fenite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity mechanism during the early stages of deformation for a microstructure containing I5% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism in when there is 50% of polygonal ferrite in the microstructure. The baillitic fenite morphology affects the deformation mode of retained austenite during straining. The polygonal fenite behavior during straining depends on dislocation substructure tonned due to the deformation and the additional mobile dislocations caused by the TRIP effect. TRIP and TWIP effects depend not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper the effect of grain refinement on the dynamic response of ultra fine-grained (UFG) structures for C–Mn and HSLA steels is investigated. A physically based flow stress model (Khan-Huang-Liang, KHL) was used to predict the mechanical response of steel structures over a wide range of strain rates and grain sizes. However, the comparison was restricted to the bcc ferrite structures. In previous work [K. Muszka, P.D. Hodgson, J. Majta, A physical based modeling approach for the dynamic behavior of ultra fine-grained structures, J. Mater. Process. Technol. 177 (2006) 456–460] it was shown that the KHL model has better accuracy for structures with a higher level of refinement (below 1 μm) compared to other flow stress models (e.g. Zerrili-Armstrong model). In the present paper, simulation results using the KHL model were compared with experiments. To provide a wide range of the experimental data, a complex thermomechanical processing was applied. The mechanical behavior of the steels was examined utilizing quasi-static tension and dynamic compression tests. The application of the different deformation histories enabled to obtain complex microstructure evolution that was reflected in the level of ferrite refinement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fractions of polygonal ferrite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interrupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behaviour as a function of plastic strain. X-ray analysis was used to characterise the volume fraction and carbon content of retained austenite. Transmission electron microscopy was utilised to analyse the effect of bainitic ferrite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity (TRIP) mechanism during the early stages of deformation for a microstructure containing 15% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism when there is 50% of polygonal ferrite in the microstructure. The bainitic ferrite morphology affects the deformation mode of retained austenite during straining. The polygonal ferrite behaviour during straining depends on dislocation substructure formed due to the deformation and the additional mobile dislocations caused by the TRIP effect. Operation of TRIP or twinning mechanisms depends not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of a bake-hardening (BH) treatment on the microstructure and mechanical properties has been studied in C-Mn-Si TRansformation Induced Plasticity (TRIP) and Dual Phase (DP) steels after: (i) thermomechanical processing (TMP) and (ii) intercritical annealing (IA). The steels were characterized using X-ray diffraction, transmission electron microscopy (TEM) and three-dimensional atom probe tomography (APT). All steels showed high BH response. however, the DP and trip steels after IA/BH showed the appearance of upper and lower yield points, while the stress-strain behavior of the trip steel after TMP/BH was still continuous. This was due to the higher volume fraction of bainite and more stable retained austenite in the TMP/BH steel, the formation of plastic deformation zones with high dislocation density around the "as-quenched” martensite and “TRIP” martensite in the IA/BH DP steel and IA/BH TRIP steel, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 °C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre-existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of {111} slip planes. The corresponding misorientations were small and largely displayed a non-cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub-boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub-boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic stainless steels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of composition and hot rolling conditions on the shape memory effect (SME) in the Fe–Mn–Si-based system has been studied to obtain improved shape memory without the need to rely on “training”. It has been found that the texture is not markedly affected by rolling conditions, and texture is therefore not a major factor in explaining variations in SME with processing conditions. Decreasing the pre-deformation temperature to below the Ms was found to have a beneficial effect on shape memory. It was found that the best SME was achieved in an alloy that had Ms just above room temperature, and had been processed by hot rolling followed by recovery annealing. Alloys of different compositions exhibited different optimum rolling temperatures for maximum shape memory performance.