975 resultados para Thermal water
Resumo:
This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was studied using electrofishing at 37 sites to determine the current distribution. The RCP4.5 and RCP8.5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used for simulations and local downscaling in this study. We found more reliable results using the daily mean stream temperature than maximum daily temperature and their respective seven days moving-average to determine the distribution thresholds. Thereby, the observed limits of the summer distribution of brown trout were linked to thresholds between 18.1ºC and 18.7ºC. These temperatures characterise a realised thermal niche narrower than the physiological thermal range. In the most unfavourable climate change scenario, the thermal habitat loss of brown trout increased to 38% (Cega stream) and 11% (Pirón stream) in the upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 56% due to the effect of a ?warm-window? opening in the piedmont reach.
Resumo:
Solar heating of potable water has traditionally been accomplished through the use of solar thermal (ST) collectors. With the recent increases in availability and lower cost of photovoltaic (PV) panels, the potential of coupling PV solar arrays to electrically heated domestic hot water (DHW) tanks has been considered. Additionally, innovations in the SDHW industry have led to the creation of photovoltaic/thermal (PV/T) collectors, which heat water using both electrical and thermal energy. The current work compared the performance and cost-effectiveness of a traditional solar thermal (ST) DHW system to PV-solar-electric DHW systems and a PV/T DHW system. To accomplish this, a detailed TRNSYS model of the solar hot water systems was created and annual simulations were performed for 250 L/day and 325 L/day loads in Toronto, Vancouver, Montreal, Halifax, and Calgary. It was shown that when considering thermal performance, PV-DHW systems were not competitive when compared to ST-DHW and PVT-DHW systems. As an example, for Toronto the simulated annual solar fractions of PV-DHW systems were approximately 30%, while the ST-DHW and PVT-DHW systems achieved 65% and 71% respectively. With current manufacturing and system costs, the PV-DHW system was the most cost-effective system for domestic purposes. The capital cost of the PV-DHW systems were approximately $1,923-$2,178 depending on the system configuration, and the ST-DHW and PVT system were estimated to have a capital cost of $2,288 and $2,373 respectively. Although the capital cost of the PVT-DHW system was higher than the other systems, a Present Worth analysis for a 20-year period showed that for a 250 L/day load in Toronto the Present Worth of the PV/T system was approximately $4,597, with PV-DHW systems costing approximately $7,683-$7,816 and the ST-DHW system costing $5,238.
Resumo:
At head of title: Department of Scientific and Industrial Research. Fuel Research.
Resumo:
We address the practical issue of using thermal image data without adjustment or calibration for projects which do not require actual temperatures per se. Large scale airborne scanning in the thermal band at 8.5–13 μm was obtained for a mangrove and salt marsh in subtropical eastern Australia. For open sites, the raw image values were strongly positively correlated with ground level temperatures. For sites under mangrove canopy cover, image values indicated temperatures 2–4°C lower than those measured on the ground. The raw image was useful in identifying water bodies under canopy and has the potential for locating channel lines of deeper water. This could facilitate modification to increase flushing in the system, thereby reducing mosquito larval survival.
Resumo:
Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference
Resumo:
For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.
Resumo:
In this study, thermal, exergetic analysis and performance evaluation of seawater and fresh wet cooling tower and the effect of parameters on its performance is investigated. With using of energy and mass balance equations, experimental results, a mathematical model and EES code developed. Due to lack of fresh water, seawater cooling is interesting choice for future of cooling, so the effect of seawater in the range of 1gr/kg to 60gr/kg for salinity on the performance characteristics like air efficiency, water efficiency, output water temperature of cooling tower, flow of the exergy, and the exergy efficiency with comparison with fresh water examined. Decreasing of air efficiency about 3%, increasing of water efficiency about 1.5% are some of these effects. Moreover with formation of fouling the performance of cooling tower decreased about 15% which this phenomena and its effects like increase in output water temperature and tower excess volume has been showed and also accommodate with others work. Also optimization for minimizing cost, maximizing air efficiency, and minimizing exergy destruction has been done, results showed that optimization on minimizing the exergy destruction has been satisfy both minimization of the cost and the maximization of the air efficiency, although it will not necessarily permanent for all inputs and optimizations. Validation of this work is done by comparing computational results and experimental data which showed that the model have a good accuracy.
Resumo:
Flaring has been widely used in the upstream operation of the oil and gas industry, both onshore and offshore. It is considered a safe and reliable way to protect assets from overpressure and the environment from toxic gas using combustion. However, there are drawbacks to using flares, such as vibration and thermal radiation. Excessive contact with thermal radiation is harmful to offshore personnel and equipment. Research organizations and companies have invested time and money to combat this. Many technologies have been developed so far to reduce the risk of thermal radiation, one of them being the water curtain system. Several tests were done to see the effectiveness of the water curtain system in mitigating thermal radiation in an offshore environment. Each test varied in the flare output, wind speed, and the size of water droplets size of the water curtain. Later, the results of each test were compared and analyzed. The results showed that a water curtain system could be a solution to excessive thermal radiation that comes from an offshore flare. Moreover, the water curtain with smaller water droplets diameter gives a more favorable result in reducing thermal radiation. These results suggest that, although it offers simplicity and efficiency, designing an efficient water curtain system requires deep study. Various conditions, such as wind speed, flare intensity, and the size of the water droplets, plays a vital role in the effectiveness of the water curtain system in attenuating thermal radiation.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The thermal conductivity and mechanical strength of gypsum and gypsum-cellulose plates made from commercial plaster by a new process have been measured. The gypsum parts made by the new process, 'novogesso', have high mechanical strength and low porosity. The gypsum strength derives from both the high aspect ratio of the gypsum crystals and the strong adhesion among them by nano-flat layers of confined water, which behaves as supercooled water. Another contribution to the strength comes from the nano-flatness of the lateral surfaces of the gypsum single crystals. The bending and compression strengths, σB and σc, of gypsum plates prepared by this new technique can be as high as 30 and 100 MPa, respectively. The way gypsum plates have been assembled as well as their low thermal conductivity allowed for the construction of a low-cost experimental house with thermal and acoustic comfort.
Resumo:
Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
Organosolv lignins can replace petroleum chemicals such as phenol either partially or totally in various applications. Eight lignins, seven of which corresponded to the ethanol-water fractionation of bagasse and the other to a reference lignin (Alcell (R)) were analyzed with the aim to evaluate their chemical and physicochemical characteristics. The purity of the lignin fractions was determined by high pressure liquid chromatography (HPLC) and by ash content. Fourier Transform-Infrared Spectroscopy (FTIR) techniques and differential UV spectroscopy were applied to identify the chemical groups in the lignin samples. The molecular weight distribution was determined by size exclusion chromatography (HPSEC). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to determine the mass loss due to the high temperature treatment. The lignins studied showed the presence of p-hydroxyphenyl (H unit) and a greater proportion of guaiacyl (G unit) moieties, lower purity, similar or greater amount of phenolic hydroxyl groups, and higher degradation temperatures, than the Alcell (R) lignin.