946 resultados para Thermal dissipation method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The measurement of cantilever parameters is an essential part of performing a calibrated measurement with an atomic force microscope (AFM). The thermal motion method is a widely used technique for calibrating the spring constant of an AFM cantilever, which can be applied to non-rectangular cantilevers. Given the trend towards high frequency scanning, calibration of non-rectangular cantilevers is of increasing importance. This paper presents two results relevant to cantilever calibration via the thermal motion method. We demonstrate the possibility of using the AFM's phase signal to acquire the thermal motion. This avoids the challenges associated with connecting the raw photodiode signal to a separate spectrum analyser. We also describe how numerical calculations may be used to calculate the parameters needed in a thermal motion calibration of a non-rectangular cantilever. Only accurate knowledge of the relative size of the in-plane dimensions of the cantilever is needed in this computation. We use this pair of results in the calibration of a variety of rectangular and non-rectangular cantilevers. We observe an average difference between the Sader and thermal motion values of cantilever stiffness of 10%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

用分子动力学模拟方法研究甲烷水合物热激法分解,系统地研究注入340 K液态水的结构Ⅰ型甲烷水合物的分解机理.模拟显示水合物表层水分子与高温液态水分子接触获得热能,分子运动激烈,摆脱水分子间的氢键束缚,笼状结构被破坏.甲烷分子获得热能从笼中挣脱,向外体系扩散.热能通过分子碰撞从外层传递给内层水分子,水合物逐层分解.对比注入277K液态水体系模拟结果,得出热激法促进水合物分解.


Thermal stimulation on dissociation of methane hydrate was investigated with molecular dynamics simulation. The dissociation mechanism of methane hydrate with structure Ⅰ was investigated systematically by injecting heated, liquid water of 340 K. The results showed that when the water molecules on hydrate surface are made in contact with high temperature liquid water, they obtain heat energy, and with the obtained energy the water molecules move intensively, breaking the hydrogen bond between water molecules, and destroy the clathrate structure. In addition, methane molecules that have obtained heat energy, break away from the clathrate and diffuse into liquid. Due to heat energy being transferred into inside layer from outside layer through collision between molecules, the hydrate is dissociated layer by layer. Comparing the effects of liquid water with different temperatures of 340 and 277 K on hydrate dissociation, it is concluded that the thermal stimulation promotes dissociation of the hydrate. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

应用热扩散式树干茎流计(TDP)于2008年4~10月对黄土高原安塞县侧柏人工林树干液流速率进行了连续测定,并对周围气象、土壤水分等多个环境因子进行了同步测定。结果表明:侧柏在不同月份晴天树干液流速率变化具有明显的昼夜节律性,呈单峰曲线;且各月液流速率日均值受土壤供水水平限制总体上呈下降趋势,即4月份最大,为0.00135cm.s-1;10月份最小为0.00011cm.s-1;树干液流速率与光合有效辐射、大气温度、水汽压差呈极显著正相关,与相对湿度呈负相关,其相关程度:光合有效辐射>水汽压差>大气温度>相对湿度,并可用线性表达式来估算;侧柏边材面积和地径呈幂指数关系,并以此结合密度估算出样地侧柏人工林的边材面积为4.65m2,最终估算出侧柏人工林生长季总耗水量为1159.6t.hm-2。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

应用热扩散式树干茎流计(TDP)于2008年4月26日至5月31日,在黄土高原半干旱区安塞县对人工林刺槐展叶期树干液流及其气象、土壤水分等6个指标进行连续测定。结果表明:刺槐展叶期可分为芽期、展叶初期、中期和全叶期。在芽期,刺槐树干液流速率日变化无明显昼夜波动;在展叶初期至全叶期日变化呈现出从微弱波动逐渐增大到趋于平稳的剧烈波动;在展叶中期以后液流速率表现为上升快、下降缓慢的单峰曲线;在全叶期平均峰值约为0.0027cm.s-1;树干液流速率与光合有效辐射强度、大气温度、水蒸气压亏缺和风速呈极显著正相关,与相对湿度呈负相关,其相关程度依次为光合有效辐射强度>大气温度>水蒸气压亏缺>相对湿度>风速,且可用光合有效辐射强度和大气温度线性表达式来估测;土壤水分在展叶期呈逐渐减少趋势,但对树干液流的胁迫不显著;在展叶期刺槐单株日蒸腾耗水量随直径的增大而增大并与胸径呈良好的线性关系,可用来估算展叶期刺槐人工林蒸腾耗水量。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 mu M, 2 mu M and 0.2 mu M for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04-5.6 mu M, 2-64 mu M and 0.8-16.8 mu M, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Series of novel homo- and copolyimides containing pyridine units were prepared from the heteroaromatic diamines, 2,5-bis (4-aminophenyl) pyridine and 2-(4aminophenyl)-5-aminopyridine, with pyromelltic dianhydride (PMDA), and 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidizaton method. The poly(amic acid) precursors have inherent viscosities of 1.60-9.64 dL/g (c = 0.5 g/dL in DMAC, 30 degrees C) and all of them can be cast and thermally converted into flexible and tough polyimide films. All of the polyimides show excellent thermal stability and mechanical properties. The polyimides have 10% weight loss temperature in the range of 548-598 degrees C in air. The glass transition temperatures of the PMDA-based samples are in the range of 395-438 degrees C, while the BPDA-based polyimides show two glass transition temperatures (T(g)1 and T(g)2), ranging from 268 to 353 degrees C and from 395 to 418 degrees C, respectively. The flexible films possess tensile modulus in the range of 3.42-6.39 GPa, strength in the range of 112-363 MPa and an elongation at break in the range of 1.2-69%. The strong reflection peaks in the wide-angle X-ray diffraction patterns indicate that the polyimides have a high packing density and crystallinity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chlorination reaction of Li2CO3 with NH4Cl has been studied in detail by a series of thermal analysis methods. When NH4Cl/Li2CO3 mole ratio equals 4, Li2CO3 can be transformed into LiCl quantitatively in a stream of Ar gas flow. All residual NH4Cl is decomposed completely at 400 degrees C and carried away from the reaction cell by Ar gas.Analysis by X-Ray diffraction and Ion Chromatography show that there are almost no NH4Cl remained in The LiCl product. It is interested that the chlorination reaction can be applied to the determinations of phase diagram by thermal analysis method and the preparation of Al-Li alloy by electrolysis in molten salt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was carried out to examine the effect of dynamic photosynthetically active photon flux density (PPFD) on photoinhibition and energy use in three herbaceous species, prostrate Saussurea superba, erect-leaved S. katochaete, and half-erect-leaved Gentiana straminea, from the Qinghai-Tibet Plateau. Chlorophyll fluorescence response was measured under each of three sets of high-low PPFD combinations: 1700-0, 1400-300, and 1200-500 mu mol m(-2) s(-1), illuminating in four dynamic frequencies: 1, 5, 15, and 60 cycles per 2 h. The total light exposure time was 2h and the integrated PPFD was the same in all treatments. The highest frequency of PPFD fluctuation resulted in the lowest photochemical activity, the highest level of non-photochemical quenching, and the greatest decrease of F-v/F-m (maximal photochemical efficiency of PSII). The 5 and 15 cycles per 2h treatments resulted in higher photochemical activity than the 1 cycle per 2h treatment. The 1700-0 PPFD combination led to the lowest photochemical activity and more serious photoinhibition in all species. S. superba usually exhibited the highest photochemical activity and CO2 uptake rate, the lowest reduction of F-v/F-m,F- and the smallest fraction of energy in thermal dissipation. With similar fractions of thermal dissipation, S. katochaete had relatively less photoinhibition than G. straminea owing to effective F-o quenching. The results suggest that high frequency of fluctuating PPFD generally results in photoinhibition, which is more serious under periods of irradiation with high light intensity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose The aim of this work was to examine, for amorphous solid dispersions, how the thermal analysis method selected impacts on the construction of thermodynamic phase diagrams, and to assess the predictive value of such phase diagrams in the selection of optimal, physically stable API-polymer compositions. Methods Thermodynamic phase diagrams for two API/polymer systems (naproxen/HPMC AS LF and naproxen/Kollidon 17 PF) were constructed from data collected using two different thermal analysis methods. The “dynamic” method involved heating the physical mixture at a rate of 1 &[deg]C/minute. In the "static" approach, samples were held at a temperature above the polymer Tg for prolonged periods, prior to scanning at 10 &[deg]C/minute. Subsequent to construction of phase diagrams, solid dispersions consisting of API-polymer compositions representative of different zones in the phase diagrams were spray dried and characterised using DSC, pXRD, TGA, FTIR, DVS and SEM. The stability of these systems was investigated under the following conditions: 25 &[deg]C, desiccated; 25 &[deg]C, 60 % RH; 40 &[deg]C, desiccated; 40 &[deg]C, 60 % RH. Results Endset depression occurred with increasing polymer volume fraction (Figure 1a). In conjunction with this data, Flory-Huggins and Gordon-Taylor theory were applied to construct thermodynamic phase diagrams (Figure 1b). The Flory-Huggins interaction parameter (&[chi]) for naproxen and HPMC AS LF was + 0.80 and + 0.72, for the dynamic and static methods respectively. For naproxen and Kollidon 17 PF, the dynamic data resulted in an interaction parameter of - 1.1 and the isothermal data produced a value of - 2.2. For both systems, the API appeared to be less soluble in the polymer when the dynamic approach was used. Stability studies of spray dried solid dispersions could be used as a means of validating the thermodynamic phase diagrams. Conclusion The thermal analysis method used to collate data has a deterministic effect on the phase diagram produced. This effect should be considered when constructing thermodynamic phase diagrams, as they can be a useful tool in predicting the stability of amorphous solid dispersions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.