995 resultados para Textile fibers, Synthetic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The textile industry is one amongst the rapidly growing industries world wide, which utilizes enormous amounts of synthetic dyes. Consequently, the effluent from these textile industries poses serious threat to the environment which is often very difficult to treat and dispose. This has become a very grave problem in environment conservation and hence natural pigments have drawn the attention of industry as safe alternative. In this context, in the present study an attempt was made to bioprospect marine bacteria towards isolation of a suitable and ideal pigment that could be used as a natural dye. A marine Serratia sp. BTWJ8 was recognized to synthesize enormous amounts of a prodigiosin-like pigment. The pigment was isolated and characterized for various properties. The pigment was evaluated for application as a dye in the textile industry. Results of the studies indicated that this pigment could be used as a natural dye for imparting red-yellow colour to various grades of textile materials. The colour was observed to be stable after wash performance studies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technical textiles, based on advanced polymeric materials, are an important segment of the synthetic textile market. This area has seen considerable growth in recent times, now accounting for almost 25% of all manufactured synthetic fibres, and has driven the recent development of a range of specialist high performance polymer fibres that are stronger, lighter or have improved heat and fire resistance. However, the increasing size of the market has highlighted the need for materials that have improved performance whilst maintaining low manufacturing costs. These factors have resulted in a change in how new specialty fibres are developed and the emphasis in this field is now on the upgrading or improving of the properties of commodity (conventional) fibres by modifying their properties to suit specific applications.

This paper will describe our work on preparing novel polymer nanocomposite fibres by the addition of clay nanoparticles during melt extrusion. The effect of the nanoparticles on the processing of the fibres and the result on the physical morphology and mechanical properties will be described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technical textiles, based on advanced polymeric materials, are an important segment of the synthetic textile market. This area has seen considerable growth in recent times, now accounting for almost 25% of all manufactured synthetic fibres, and has driven the recent development of a range of specialist high performance polymer fibres that are stronger, lighter or have improved heat and fire resistance. However, the increasing size of the market has highlighted the need for materials that have improved performance whilst maintaining low manufacturing costs. These factors have resulted in a change in how new specialty fibres are developed and the emphasis in this field is now on the upgrading or improving of the properties of commodity (conventional) fibres by modifying their properties to suit specific applications.

This paper will describe our work on preparing novel polymer nanocomposite fibres by the addition of clay nanoparticles during melt extrusion. The effect of the nanoparticles on the processing of the fibres and the result on the physical morphology and mechanical properties will be described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indigo dye is extensively used by textile industries and is considered a recalcitrant substance, which causes environmental concern. Chemical products used on textile processing, which affect the environment through effluents, can be voluminous, colored and varied. Vat textile dyes, like indigo, are often used and dye mainly cellulosic fibers of cotton. Decolorization of this dye in liquid medium was tested with ligninolytic basidiomycete fungi from Brazil. Decolorization started in a few hours and after 4 days the removal of dye by Phellinus gilvus culture was in 100%, by Pleurotus sajor-caju 94%, by Pycnoporus sanguineus 91% and by Phanerochaete chrysosporium 75%. No color decrease was observed in a sterile control. Thin layer chromatography of fungi culture extracts revealed only one unknown metabolite of Rf = 0.60, as a result of dye degradation. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azo dyes are extensively used for coloring textiles, paper, food, leather, drink, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10 - 15% of dyes used for coloring textiles might be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can be readly reduced by a number of chemical and biological reducing systems. Biological treatment is advantageous over physical and chemical method as result of its low cost and little disturbance to the environment. This research focuses on the utilization of Aspergillus oryzae, to remove some kinds of azo dyes from aqueous solutions. The fungi, physically induced in its paramorphogenic form (called, pellets), were used in the dyes biosorption studies with both non autoclave and autoclaved hyphas, at differents pH values. Thus the goals are the removal of dyes by biosorption and the decrease of its toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.