962 resultados para Terrestrial exoplanets
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We argue that the most important climatically-driven terrestrial ecosystem changes are concentrated in annual- to decadal-scale episodic events. These rapid ecosystem responses to climate change are manifested as regionally synchronized disturbance events (eg, floods, fires, and insect outbreaks) and increased drought-caused plant mortality rates.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Western North America is particularly rich in natural records of climate that have potential to reveal features of interdecadal climate variability.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Large-scale changes in the growth and decay of land plants can be deduced from trends in the concentration of atmospherics [sic] carbon dioxide, after removing signals in the recorded data caused by oceanic and industrial disturbances to the concentration.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High alpine environments provide a variety of paleorecords based on physical (glaciers, glacio-lacustrine sedimentation) and biological systems (tree rings, tree-line fluctuations). These records have varying temporal resolution and contain different climate-related signals but, in concert, provide a more comprehensive reconstruction of past climates than is possible from any single archive.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Measurements of spatial and temporal distributions of carbon dioxide concentration and carbon-13/carbon-12 ratio in the atmosphere suggest a strong biospheric carbon sink in terrestrial ecosystems. Quantifying the sink, however, has become an enormous challenge for Earth system scientists because of great uncertainties associated with biological variation and environmental heterogeneity in the ecosystems. This paper presents an approach that uses two driving parameters to bound terrestrial carbon sequestration associated with an increase in carbon dioxide concentration.
Resumo:
During a computer-aided search of the Crustacea collection in the Department of Invertebrate Zoology at the Smithsonian Institution (USNM), a record was found for the existence of Hemilepistus klugii (Brandt, 1833) in Pakistan.
Resumo:
Four zoeal stages and one megalopal stage were identified in laboratory reared semiterrestrial mangrove sesarmine crab Chasmagnathus convexus. At an average salinity and temperature of 20±1% and 19.2±0.2°C, the megalopa was attained 24 days after hatching. Morphologically, the first zoae of C. convexz1s is very similar to those of other species of the genus Chasmagnathus as well as species of the genus Helice, in that view all share the following characteristics: lateral spine on the carapace, three pairs of setae on the posterior margin of the telson furca, one plus five setae on the endopod of the maxillule, and two plus two setae on the endopod of the maxilla. The differences between the first zoea and megalopa of and those of its congeners are discussed.
Resumo:
Both colonies and free-living cells of the terrestrial cyanobacterium, Nostoc flagelliforme (Berk. & Curtis) Bornet & Flahault, were cultured under aquatic conditions to develop the techniques for the cultivation and restoration of this endangered resource. The colonial filaments disintegrated with their sheaths ruptured in about 2 days without any desiccating treatments. Periodic desiccation played an important role in preventing the alga from decomposing, with greater delays to sheath rupture with a higher frequency of exposure to air. The bacterial numbers in the culture treated with seven periods of desiccation per day were about 50% less compared with the cultures without the desiccation treatment. When bacteria in the culture were controlled, the colonial filaments did not disintegrate and maintained the integrity of their sheath for about 20 days even without the desiccation treatments, indicating the importance of desiccation for N. flagelliforme to prevent them from being disintegrated by bacteria. On the other hand, when free-living cells obtained from crushed colonial filaments were cultured in liquid medium, they developed into single filaments with sheaths, within which multiple filaments were formed later on as a colony. Such colonial filaments were developed at 15, 25, and 30degreesC at either 20 or 60 mumol photons.m(-2).s(-1); colonies did not develop at 180 mumol photons.m(-2).s(-1), though this light level resulted in the most rapid growth of the cells. Conditions of 60 mumol photons.m(-2).s(-1) and 25degrees C appeared to result in the best colonial development and faster growth of the sheath-held colonies of N. flagelliforme when cultured indoor under aquatic conditions.
Resumo:
The photosynthetic characteristics of the terrestrial cyanobacterium, Nostoc flagelliforme, after complete recovery by rewetting, was investigated to see whether it could use bicarbonate as the external inorganic carbon source when submerged. The photosynthesis-pH relationship and high pH compensation point suggested that the terrestrial alga could use bicarbonate to photosynthesize when submerged. The photosynthetic oxygen evolution rates were significantly inhibited in Na+-free and Na+ + Li+ media but were not affected by the absence of Cl-, implying that the bicarbonate uptake was associated with Na+/HCO3- symport rather than Cl-/HCO3- exchange system.
Resumo:
Enchytraeid surveys were made in China, mainly along the Changjiang (Yangtze) River Basin, during the period 1991-1999. Among the findings, four terrestrial species of Marionina are new to science and well illustrate the taxonomic complexity of the genus as currently defined. Marionina sinica sp. n. is characterized by a specific chaetal distribution, the marionine pattern of the dorsal blood vessel, and elongate, fusiform, spermathecal ectal ducts. Marionina sacculata sp. n. is distinguished by the possession of a pair of pouch-like oesophageal appendages in IV, the lack of lateral chaetae in VII-XI, a marionine pattern of the dorsal blood vessel, and short spermathecal ectal ducts gradually expanding into spherical ampullae. Both M. sinica and M. sacculata have minute bodies (2-3 mm long in vivo) and lack spermathecal accessory glands. The former species shows its closest aYnities with the European M. brendae Rota, 1995, whereas the latter is closest to the German M. hoVbaueri Moller, 1971, for which an amended diagnosis is provided. Marionina seminuda sp. n. has only ventral chaetal bundles, distributed from III onwards and bisetose. It is similar to the Holarctic M. subterranea (Knollner, 1935) in lacking entirely the lateral chaetae and in having the brain incised posteriorly, the dorsal vessel bifurcating behind the pharynx, and coelomocytes containing opaque granules, but diVers from it in having the longest chaetae in preclitellar segments and gland cells distributed all over the spermathecal ectal ducts. Marionina righiana sp. n. is diagnosed by the location of the head pore on the prostomium, the absence of lateral chaetae from VIII ( VII or IX) onwards, the possession of free spermathecae extending backwards through one to four segments, the brain deeply incised posteriorly, the lumbricilline pattern of the dorsal blood vessel, and the opacity of coelomocytes in vivo. Prior to this study, members of the genus so atypical as M. righiana with respect to the position of the head pore and the structure of the spermathecae were known only from South American soils. Until the taxonomy of Marionina has been more thoroughly assessed and revised, the assignment of the four species to this large assemblage should be regarded as tentative.
Resumo:
Photosynthetic responses of rewetted Nostoc flagelliforme to CO2, desiccation, light and temperature were investigated under emersed conditions in order to characterize its ecophysiological behaviour in nature. Net photosynthesis increased to a maximum rate at about 30 % water loss, then decreased, while dark respiration always decreased with the progress of desiccation. Light-saturated photosynthesis and dark respiration were significantly reduced at 8 degreesC, but remained little affected by changes of temperature within the range of 15-35 degreesC. Photosynthetic efficiency (alpha) was maximal at the beginning of desiccation and then reduced with increased water loss. Saturating irradiance for photosynthesis was about 194-439 mu mol quanta m(-2) s(-1), being maximal at about 30 % water loss. No photoinhibition was observed at irradiances up to 1140 mu mol m(-2) s(-1). Light compensation points were about 41-93 mu mol m(-2) s(-1). Photosynthesis of N. flagelliforme was CO2-limited at the present atmospheric CO2 level. The CO2-saturated photosynthesis increased with increase of irradiance (190-1140 mu mol m(-2) s(-1)) and temperature (8-25 degreesC) and decreased significantly with water loss (0-75 %). Photosynthetic affinity for CO2 was sensitive to temperature and irradiance. The CO2 compensation point (Gamma) increased significantly with increased temperature and was insensitive to irradiance. Desiccation did not affect Gamma values before water loss exceeded 70 %. Photorespiratory CO2 release did not occur in N. flagelliforme at the current atmospheric CO2 level.
Fridericia nanningensis, a new terrestrial enchytraeid species (Oligochaeta) from southwestern China
Resumo:
Fridericia nanningensis, a new species from wetland soil of Nanhu Park, Nanning city, the capital of Guangxi Zhuang Autonomous Region in southwest China, is described. It is characterized by 2-4 chaetae per bundle, poorly-developed clitellar glands, slender, unbranched peptonephridia, and spermathecae with 2 ampullar diverticula, a deep constriction in the middle of the ampulla and one large ectal gland. It is closely related to the European species, F. alata Nielsen & Christensen, 1959 and the East European species, F. tubulosa Dozsa-Farkas, 1972 by the shape of peptonephridia and the undeveloped clitellar glands. It differs from F. alata by its shorter body length and fewer chaetae per bundle, its type of coelomocytes (type "c"), its deep constriction in the middle of the spermathecae ampulla and a larger ectal gland, and it differs from F. tubulosa by its pale epidermal glands, its more anterior origin of the dorsal vessel, a deep constriction in the middle of the spermathecae ampulla, shorter ectal duct, and only one ectal gland at the spermathecal orifice.
Resumo:
The effects of gravity and crystal orientation on the dissolution of GaSb into InSb melt and the recrystallization of InGaSb were investigated under microgravity condition using a Chinese recoverable satellite and under normal gravity condition on earth. To investigate the effect of gravity on the solid/liquid interface and compositional profiles. a numerical simulation was carried out. The InSb crystal melted at 525 degrees C and then a part of GaSb dissolved into the InSb melt during heating to 706 degrees C and this process led to the formation of InGaSb solution. InGaSb solidified during the cooling process. The experimental and calculation results clearly show that the shape of the solid/liquid interface and compositional profiles in the solution were significantly affected by gravity. Under microgravity, as the Ga compositional profiles were uniform in the radial direction. the interfaces were almost parallel. On the contrary, for normal gravity condition, as large amounts of Ga moved up in the upper region due to buoyancy, the dissolved zone broadened towards gravitational direction. Also. during the cooling process, needle crystals of InGaSb started appearing and the value of x of InxGa1-xSb crystals increased with the decrease of temperature. The GaSb with the (111)B plane dissolved into the InSb melt much more than that of the (111)A plane. (C) 2000 Elsevier Science B.V. All rights reserved.