954 resultados para Terrain Traversability
Resumo:
Cet article présente les implications particulières de deux expériences de terrain faisant émerger la problématique des apports et de l'utilité de l'anthropologie dans le domaine de la santé. Face aux attentes fortes des interlocuteurs de terrain (demandes d'expertise anthropologique dans le domaine de la prévention du suicide et dans celui de la recherche en soins palliatifs), les chercheuses se sont laissé en partie « détourner » en ne travaillant plus seulement « sur », mais « avec » leurs interlocuteurs. Tout en prenant en compte les risques d'instrumentalisation par le domaine médical, la réflexivité du chercheur face à son implication sur le terrain est considérée comme un outil indispensable pour préserver sa distance critique. Par ailleurs, ces expériences de terrain sont l'occasion de réfléchir à la possibilité de créer des échanges discursifs avec les interlocuteurs du terrain et de favoriser ainsi le changement social depuis l'intérieur.
Resumo:
New reconstructions of the Western Alps from late Early Jurassic till early Tertiary are proposed. These reconstructions use deep lithospheric data gathered through recent seismic surveys and tomographic studies carried out in the Alps. The present day position, under the Po plain, of the southern limit of the European plate (fig. 1), allows to define the former geometry of the Brianconnais peninsula. The Brianconnais domain is regarded as an exotic terrane formerly belonging to the European margin until Late Jurassic, then transported eastward during the drift of Iberia (fig. 5). Therefore, on a present day Western Alps cross section, a duplication of the European continental margin can be recognized (fig. 10). Stratigraphic and sedimentological data along a zone linking the Pyrenean fracture zone to the Brianconnais, can be related to a rifting event starting in Oxfordian time. This event is responsible for the Late Jurassic till mid-Cretaceous drift of Iberia opening, first the northern Atlantic, then the Gulf of Biscay. Simultaneously, the drift of the Brianconnais will open the Valais ocean and close the Piemontese ocean. The resulting oblique collision zone between the Brianconnais and the Apulian margin generates HP/LT metamorphism starting in Early Cretaceous. The eastward drift of the Brianconnais peninsula will eventually bring it in front of a more northerly segment of the former European margin. The thrusting of the Brianconnais unto that margin takes place in early Tertiary (fig. 9), following the subduction of the Valais ocean. The present nappe pile results not only from continent/continent frontal collision, but also from important lateral displacement of terranes, the most important one being the Brianconnais. The dilemma of `'en echelon'' oceanic domains in the Alps is an outcome of these translations. A solution is found when considering the opening of a Cretaceous Valais ocean across the European margin, running out eastward into the Piemontese ocean, where the drift is taken up along a former transform fault and compensated by subduction under the Apulian margin (fig. 8). In the Western Alps we are then dealing with two oceans, the Piemontese and the Valaisan and a duplicated European margin. In the Eastern Alps the single Piemontese ocean is cut by newly created oceanic crust. All these elements will be incorporated into the Penninic structural domain which does not represent a former unique paleogeographic area, it is a composite accretionary domain squeezed between Europe and Apulia.
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.
Resumo:
In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.