899 resultados para Tensile strength testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Materials Laboratory. Contract no. AF 33(616)-3299, Project no. 7360."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of heat treatment on CrNi stainless steel orthodontic archwires. Half of forty archwires of each thickness - 0.014 (0.35 mm), 0.016 (0.40 mm), 0.018 (0.45 mm) and 0.020 (0.50 mm) (totalling 160 archwires) - were subjected to heat treatment while the remainder were not. All of the archwires had their individual thickness measured in the anterior and posterior regions using AutoCad 2000 software before and after compressive and tensile strength testing. The data was statistically analysed utilising multivariance ANOVA at a 5% significance level. All archwires without heat treatment that were subjected to tensile strength testing presented with anterior opening, which was more accentuated in the 0.020 archwires. In the posterior region, the opening produced by the tensile force was more accentuated in the archwires without heat treatment. There was greater stability in the thermally treated archwires, especially those subjected to tensile strength testing, which indicates that the heat treatment of orthodontic archwires establishes a favourable and indispensable condition to preserve the intercanine width.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brittleness is the unintended, but inevitable consequence of producing a transparent ceramic for architectural applications such as the soda-lime glass. Its tensile strength is particularly sensitive to surface imperfections, such as that from natural weathering and malicious damage. Although a significant amount of testing of new glass has been carried out, there has been surprisingly little testing on weathered glass. Due to the variable nature of the causes of surface damage, the lack of data on weathered glass leads to a considerable degree of uncertainty in the long-term strength of exposed glass. This paper presents the results of recent tests on weathered annealed glass which has been exposed to natural weathering for more than 20 years. The tests include experimental investigations using the co-axial ring setup as well as optical and atomic force microscopy of the glass surfaces. The experimental data from these tests is subsequently used to extend existing fracture mechanics-based models to predict the strength of weathered glass. It is shown that using an automated approach based directly on finite element analysis results can give an increase in effective design strength in the order of 70 to 100% when compared to maximum stress methods. It is also shown that by combining microscopy and strength test results, it is possible to quantitatively characterise the damage on glass surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tensile strength of 576 pieces of white line horn collected over 6 mo from 14 dairy cows restricted to parity 1 or 2 was tested. None of the cows had ever been lame. Seven cows were randomly assigned to receive 20 mg/d biotin supplementation, and 7 were not supplemented. Hoof horn samples were taken from zones 2 and 3 (the more proximal and distal sites of the abaxial white line) of the medial and lateral claws of both hind feet on d 1 and on 5 further occasions over 6 mo. The samples were analyzed at 100% water saturation. Hoof slivers were notched to ensure that tensile strength was measured specifically across the white line region. The tensile stress at failure was measured in MPa and was adjusted for the cross-sectional area of the notch site. Data were analyzed in a multilevel model, which accounted for the repeated measures within cows. All other variables were entered as fixed effects. In the final model, there was considerable variation in strength over time. Tensile strength was significantly higher in medial compared with lateral claws, and zone 2 was significantly stronger than zone 3. Where the white line was visibly damaged the tensile strength was low. Biotin supplementation did not affect the tensile strength of the white line. Results of this study indicate that damage to the white line impairs its tensile strength and that in horn with no visible abnormality the white line is weaker in the lateral hind claw than the medial and in zone 3 compared with zone 2. The biomechanical strength was lowest at zone 3 of the lateral hind claw, which is the most common site of white line disease lameness in cattle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. In vitro studies on the retentive strengths of various cements used to retain posts have reported conflicting results. Purpose. The purpose of this study was to compare the tensile strength of commercially pure titanium and type III cast gold-alloy posts and cores cemented with zinc phosphate or resin cement. Material and methods. Forty-two extracted human canines were endoclontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the posts and cores were made, and specimens were cast in commercially pure titanium and in type III gold alloy (n=7). Fourteen titanium cast posts and cores were submitted to surface treatment with Kroll acid solution and to scanning electron microscopy (SEM), before and after acid etching. The groups (n=7) were cemented with zinc phosphate cement or resin cement (Panavia F). Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (Kgf) were statistically analyzed by 2-way ANCIVA (alpha=.05). Results. The 2-way ANOVA indicated that there were no significant differences among the groups tested. Retentive means for zinc phosphate and Panavia F cements were statistically similar. The bond strength was not Influenced by the alloy, the luting material, or the etching treatment. SEM analysis indicated that the etched surfaces were smoother than those that did not receive surface treatment, but this fact did not influence the results. Conclusions. Commercially pure titanium cast posts and cores cemented with zinc phosphate and resin cements demonstrated similar mean tensile retentive values. Retentive values were also similar to mean values recorded for cast gold-alloy posts and cores cemented with zinc phosphate cement and resin cements.