896 resultados para Temporal lobe epilepsy
Resumo:
Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL) is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere) walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
Resumo:
The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.
Resumo:
Cannabis sativa has been associated with contradictory effects upon seizure states despite its medicinal use by numerous people with epilepsy. We have recently shown that the phytocannabinoid cannabidiol (CBD) reduces seizure severity and lethality in the well-established in vivo model of pentylenetetrazoleinduced generalised seizures, suggesting that earlier, small-scale clinical trials examining CBD effects in people with epilepsy warrant renewed attention. Here, we report the effects of pure CBD (1, 10 and 100 mg/kg) in two other established rodent seizure models, the acute pilocarpine model of temporal lobe seizure and the penicillin model of partial seizure. Seizure activity was video recorded and scored offline using model-specific seizure severity scales. In the pilocarpine model CBD (all doses) significantly reduced the percentage of animals experiencing the most severe seizures. In the penicillin model, CBD (�10 mg/kg) significantly decreased the percentage mortality as a result of seizures; CBD (all doses) also decreased the percentage of animals experiencing the most severe tonic–clonic seizures. These results extend the anticonvulsant profile of CBD; when combined with a reported absence of psychoactive effects, this evidence strongly supports CBD as a therapeutic candidate for a diverse range of human epilepsies.
Resumo:
Auditory imagery for songs was studied in two groups of patients with left or right temporal-lobe excision for control of epilepsy, and a group of matched normal control subjects. Two tasks were used. In the perceptual task, subjects saw the text of a familiar song and simultaneously heard it sung. On each trial they judged if the second of two capitalized lyrics was higher or lower in pitch than the first. The imagery task was identical in all respects except that no song was presented, so that subjects had to generate an auditory image of the song. The results indicated that all subjects found the imagery task more difficult than the perceptual task, but patients with right temporal-lobe damage performed significantly worse on both tasks than either patients with left temporal-lobe lesions or normal control subjects. These results support the idea that imagery arises from activation of a neural substrate shared with perceptual mechanisms, and provides evidence for a right temporal- lobe specialization for this type of auditory imaginal processing.
Resumo:
Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.
Resumo:
The neuropsychological results of temporal lobe epilepsy surgery are well reported in the literature. The aim of this study was to analyse the neuropsychological outcome in a consecutive series of patients with extra-temporal epilepsy.
Resumo:
Schizophrenia is associated with significant brain abnormalities, including changes in brain metabolites as measured by proton magnetic resonance spectroscopy (MRS). What remains unclear is the extent to which these changes are a consequence of the emergence of psychotic disorders or the result of treatment with antipsychotic medication. We assessed 34 patients with first episode psychosis (15 antipsychotic naïve) and 19 age- and gender-matched controls using short-echo MRS in the medial temporal lobe bilaterally. Overall, there were no differences in any metabolite, regardless of treatment status. However, when the analysis was limited to patients with a diagnosis of schizophrenia, schizophreniform or schizoaffective disorder, significant elevations of creatine/phosphocreatine (Cr/PCr) and myo-inositol (mI) were found in the treated group. These data indicate a relative absence of temporal lobe metabolic abnormalities in first episode psychosis, but suggest that some treatment-related changes in mI might be apparent in patients with schizophrenia-spectrum diagnoses. Seemingly illness-related Cr/PCr elevations were also specific to the diagnosis of schizophrenia-spectrum disorder and seem worthy of future study.
Resumo:
PURPOSE The restricted genetic diversity and homogeneous molecular basis of Mendelian disorders in isolated founder populations have rarely been explored in epilepsy research. Our long-term goal is to explore the genetic basis of epilepsies in one such population, the Gypsies. The aim of this report is the clinical and genetic characterization of a Gypsy family with a partial epilepsy syndrome. METHODS Clinical information was collected using semistructured interviews with affected subjects and informants. At least one interictal electroencephalography (EEG) recording was performed for each patient and previous data obtained from records. Neuroimaging included structural magnetic resonance imaging (MRI). Linkage and haplotype analysis was performed using the Illumina IVb Linkage Panel, supplemented with highly informative microsatellites in linked regions and Affymetrix SNP 5.0 array data. RESULTS We observed an early-onset partial epilepsy syndrome with seizure semiology strongly suggestive of temporal lobe epilepsy (TLE), with mild intellectual deficit co-occurring in a large proportion of the patients. Psychiatric morbidity was common in the extended pedigree but did not cosegregate with epilepsy. Linkage analysis definitively excluded previously reported loci, and identified a novel locus on 5q31.3-q32 with an logarithm of the odds (LOD) score of 3 corresponding to the expected maximum in this family. DISCUSSION The syndrome can be classified as familial temporal lobe epilepsy (FTLE) or possibly a new syndrome with mild intellectual deficit. The linked 5q region does not contain any ion channel-encoding genes and is thus likely to contribute new knowledge about epilepsy pathogenesis. Identification of the mutation in this family and in additional patients will define the full phenotypic spectrum.
Resumo:
The BDNF receptor tyrosine kinase, TrkB, underlies nervous system function in both health and disease. Excessive activation of TrkB caused by status epilepticus promotes development of temporal lobe epilepsy (TLE), revealing TrkB as a therapeutic target for prevention of TLE. To circumvent undesirable consequences of global inhibition of TrkB signaling, we implemented a novel strategy aimed at selective inhibition of the TrkB-activated signaling pathway responsible for TLE. Our studies of a mouse model reveal that phospholipase Cγ1 (PLCγ1) is the dominant signaling effector by which excessive activation of TrkB promotes epilepsy. We designed a novel peptide (pY816) that uncouples TrkB from PLCγ1. Treatment with pY816 following status epilepticus inhibited TLE and prevented anxiety-like disorder yet preserved neuroprotective effects of endogenous TrkB signaling. We provide proof-of-concept evidence for a novel strategy targeting receptor tyrosine signaling and identify a therapeutic with promise for prevention of TLE caused by status epilepticus in humans.
Resumo:
Problem-solving ability was investigated in 25 DSM-IIIR schizophrenic (SC) patients using the Tower of Hanoi (TOH) task. Their performance was compared to that of: (1) 22 patients with neurosurgical unilateral prefrontal lesions, 11 left (LF) and 10 right hemisphere (RF); (2) 38 patients with unilateral temporal lobectomies, 19 left (LT) and 19 right (RT); and (3) 44 matched control subjects. Like the RT and LF group, the schizophrenics were significantly impaired on the TOH. The deficit shown by the schizophrenic group was equivalent whether or not the problems to be solved included goal-subgoal conflicts, unlike the LF group who were impaired specifically on these problems. The nature of the SC deficit was also distinct from that of the RT group, in that the problem-solving deficit remained after controlling for the effects of spatial memory performance. This study indicates, therefore, that neither focal frontal nor temporal lobe damage sustained in adult life is a sufficient explanation for the problem-solving deficits found in patients with schizophrenia. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Epilepsy is a syndrome of episodic brain dysfunction characterized by recurrent unpredictable, spontaneous seizures. Cerebellar dysfunction is a recognized complication of temporal lobe epilepsy and it is associated with seizure generation, motor deficits and memory impairment. Serotonin is known to exert a modulatory action on cerebellar function through 5HT2C receptors. 5-HT2C receptors are novel targets for developing anticonvulsant drugs. In the present study, we investigated the changes in the 5-HT2C receptors binding and gene expression in the cerebellum of control, epileptic and Bacopa monnieri treated epileptic rats. There was a significant down regulation of the 5-HT content (pb0.001), 5-HT2C gene expression (pb0.001) and 5-HT2C receptor binding (pb0.001) with an increased affinity (pb0.001). Carbamazepine and B. monnieri treatments to epileptic rats reversed the down regulated 5-HT content (pb0.01), 5-HT2C receptor binding (pb0.001) and gene expression (pb0.01) to near control level. Also, the Rotarod test confirms the motor dysfunction and recovery by B. monnieri treatment. These data suggest the neuroprotective role of B. monnieri through the upregulation of 5-HT2C receptor in epileptic rats. This has clinical significance in the management of epilepsy
Resumo:
Epilepsies are neurological disorders characterized by recurrent and spontaneous seizures due to an abnormal electric activity in a brain network. The mesial temporal lobe epilepsy (MTLE) is the most prevalent type of epilepsy in adulthood, and it occurs frequently in association with hippocampal sclerosis. Unfortunately, not all patients benefit from pharmacological treatment (drug-resistant patients), and therefore become candidates for surgery, a procedure of high complexity and cost. Nowadays, the most common surgery is the anterior temporal lobectomy with selective amygdalohippocampectomy, a procedure standardized by anatomical markers. However, part of patients still present seizure after the procedure. Then, to increase the efficiency of this kind of procedure, it is fundamental to know the epileptic human brain in order to create new tools for auxiliary an individualized surgery procedure. The aim of this work was to identify and quantify the occurrence of epilepticform activity -such as interictal spikes (IS) and high frequency oscillations (HFO) - in electrocorticographic (ECoG) signals acutely recorded during the surgery procedure in drug-resistant patients with MTLE. The ECoG recording (32 channels at sample rate of 1 kHz) was performed in the surface of temporal lobe in three moments: without any cortical resection, after anterior temporal lobectomy and after amygdalohippocampectomy (mean duration of each record: 10 min; N = 17 patients; ethic approval #1038/03 in Research Ethic Committee of Federal University of São Paulo). The occurrence of IS and HFO was quantified automatically by MATLAB routines and validated manually. The events rate (number of events/channels) in each recording time was correlated with seizure control outcome. In 8 hours and 40 minutes of record, we identified 36,858 IS and 1.756 HFO. We observed that seizure-free outcome patients had more HFO rate before the resection than non-seizure free, however do not differentiate in relation of frequency, morphology and distribution of IS. The HFO rate in the first record was better than IS rate on prediction of seizure-free patients (IS: AUC = 57%, Sens = 70%, Spec = 71% vs HFO: AUC = 77%, Sens = 100%, Spec = 70%). We observed the same for the difference of the rate of pre and post-resection (IS: AUC = 54%, Sens = 60%, Spec = 71%; vs HFO: AUC = 84%, Sens = 100%, Spec = 80%). In this case, the algorithm identifies all seizure-free patients (N = 7) with two false positives. To conclude, we observed that the IS and HFO can be found in intra-operative ECoG record, despite the anesthesia and the short time of record. The possibility to classify the patients before any cortical resection suggest that ECoG can be important to decide the use of adjuvant pharmacological treatment or to change for tailored resection procedure. The mechanism responsible for this effect is still unknown, thus more studies are necessary to clarify the processes related to it
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)