855 resultados para Temporal Analysis
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^
Resumo:
This poster raises the issue of a research work oriented to the storage, retrieval, representation and analysis of dynamic GI, taking into account The ultimate objective is the modelling and representation of the dynamic nature of geographic features, establishing mechanisms to store geometries enriched with a temporal structure (regardless of space) and a set of semantic descriptors detailing and clarifying the nature of the represented features and their temporality. the semantic, the temporal and the spatiotemporal components. We intend to define a set of methods, rules and restrictions for the adequate integration of these components into the primary elements of the GI: theme, location, time [1]. We intend to establish and incorporate three new structures (layers) into the core of data storage by using mark-up languages: a semantictemporal structure, a geosemantic structure, and an incremental spatiotemporal structure. Thus, data would be provided with the capability of pinpointing and expressing their own basic and temporal characteristics, enabling them to interact each other according to their context, and their time and meaning relationships that could be eventually established
Resumo:
The Ebro River Basin, with around 85 000 km2 and located in NE Spain, is characterized by the high spatial heterogeneity of its geology, topography, climatology and land use. Rainfall is one of the most important climatic variables studied owing to its non-homogenous behaviour in event and intensity, which creates drought, water runoff and soil erosion with negative environmental and social consequences. In this work we characterized the rainfall variability pattern in the Ebro River Basin using universal multifractal (UM) analysis, which estimates the concentration of the data around the precipitation average (C1, codimension average), the degree of multiscaling behaviour in time (? index) and the maximum probable singularity in the rainfall distribution ( s). A spatial and temporal analysis of the UM parameters is applied to study the possible changes. With this porpoise, 60 daily rainfall series were selected from 132 synthetic series generated by Luna and Balairón (AEMet). These daily rainfall series present a length of 60 years, from 1950 to 2009. Each one of them was subdivided (1950?1970 and 1980?2009) to analyse the difference between the two periods. The range of variation of precipitation amounts and the frequency of dry events between both periods are discussed, as well as the evolution of the UM parameters through the years.
Resumo:
The overall objective of this research project is to enrich geographic data with temporal and semantic components in order to significantly improve spatio-temporal analysis of geographic phenomena. To achieve this goal, we intend to establish and incorporate three new layers (structures) into the core of the Geographic Information by using mark-up languages as well as defining a set of methods and tools for enriching the system to make it able to retrieve and exploit such layers (semantic-temporal, geosemantic, and incremental spatio-temporal). Besides these layers, we also propose a set of models (temporal and spatial) and two semantic engines that make the most of the enriched geographic data. The roots of the project and its definition have been previously presented in Siabato & Manso-Callejo 2011. In this new position paper, we extend such work by delineating clearly the methodology and the foundations on which we will base to define the main components of this research: the spatial model, the temporal model, the semantic layers, and the semantic engines. By putting together the former paper and this new work we try to present a comprehensive description of the whole process, from pinpointing the basic problem to describing and assessing the solution. In this new article we just mention the methods and the background to describe how we intend to define the components and integrate them into the GI.
Resumo:
A twenty-year period of severe land subsidence evolution in the Alto Guadalentín Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentín Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 ± 4 mm for the ALOS data and of 4.8 ± 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100–200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentín aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached.
Resumo:
After a severe outbreak of West Nile virus (WNV) in Cook County, Illinois, in 2002, detections of WNV in mosquitoes were frequent across the state in the following years despite small numbers of human cases. We conducted a spatio-temporal analysis of Culex (subgenus Culex) mosquitoes collected in 2004 in three mosquito abatement districts (MAD) in Cook County by calculating monthly estimates of mosquito density, prevalence of infected mosquitoes, and exposure intensity, which in turn is a product of mosquito density and infection rates. Mosquito infections were detected early at three sites in late May and were widely detected throughout the three MADs in the summer with infection rates as high as 13 per 1000 in August. Exposure intensities were higher at sites adjacent to the Des Plaines River, especially in August and September. The aggregated pattern of WNV transmission along the river might be related to the existence of substantial forest preserves and wetlands that might produce ecological conditions favorable for mosquito proliferation and interactions between mosquitoes and birds.
Resumo:
A method for estimating the dimensions of non-delimited free parking areas by using a static surveillance camera is proposed. The proposed method is specially designed to tackle the main challenges of urban scenarios (multiple moving objects, outdoor illumination conditions and occlusions between vehicles) with no training. The core of this work is the temporal analysis of the video frames to detect the occupancy variation of the parking areas. Two techniques are combined: background subtraction using a mixture of Gaussians to detect and track vehicles and the creation of a transience map to detect the parking and leaving of vehicles. The authors demonstrate that the proposed method yields satisfactory estimates on three real scenarios while being a low computational cost solution that can be applied in any kind of parking area covered by a single camera.
MINING AND VERIFICATION OF TEMPORAL EVENTS WITH APPLICATIONS IN COMPUTER MICRO-ARCHITECTURE RESEARCH
Resumo:
Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region. PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis. The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently. To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.
Resumo:
In this paper, we describe a method to represent and discover adversarial group behavior in a continuous domain. In comparison to other types of behavior, adversarial behavior is heavily structured as the location of a player (or agent) is dependent both on their teammates and adversaries, in addition to the tactics or strategies of the team. We present a method which can exploit this relationship through the use of a spatiotemporal basis model. As players constantly change roles during a match, we show that employing a "role-based" representation instead of one based on player "identity" can best exploit the playing structure. As vision-based systems currently do not provide perfect detection/tracking (e.g. missed or false detections), we show that our compact representation can effectively "denoise" erroneous detections as well as enabe temporal analysis, which was previously prohibitive due to the dimensionality of the signal. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labelled data.
Resumo:
This paper develops a dynamic model for cost-effective selection of sites for restoring biodiversity when habitat quality develops over time and is uncertain. A safety-first decision criterion is used for ensuring a minimum level of habitats, and this is formulated in a chance-constrained programming framework. The theoretical results show; (i) inclusion of quality growth reduces overall cost for achieving a future biodiversity target from relatively early establishment of habitats, but (ii) consideration of uncertainty in growth increases total cost and delays establishment, and (iii) cost-effective trading of habitat requires exchange rate between sites that varies over time. An empirical application to the red listed umbrella species - white-backed woodpecker - shows that the total cost of achieving habitat targets specified in the Swedish recovery plan is doubled if the target is to be achieved with high reliability, and that equilibrating price on a habitat trading market differs considerably between different quality growth combinations. © 2013 Elsevier GmbH.
Resumo:
Fully structured and matured open source spatial and temporal analysis technology seems to be the official carrier of the future for planning of the natural resources especially in the developing nations. This technology has gained enormous momentum because of technical superiority, affordability and ability to join expertise from all sections of the society. Sustainable development of a region depends on the integrated planning approaches adopted in decision making which requires timely and accurate spatial data. With the increased developmental programmes, the need for appropriate decision support system has increased in order to analyse and visualise the decisions associated with spatial and temporal aspects of natural resources. In this regard Geographic Information System (GIS) along with remote sensing data support the applications that involve spatial and temporal analysis on digital thematic maps and the remotely sensed images. Open source GIS would help in wide scale applications involving decisions at various hierarchical levels (for example from village panchayat to planning commission) on economic viability, social acceptance apart from technical feasibility. GRASS (Geographic Resources Analysis Support System, http://wgbis.ces.iisc.ernet.in/grass) is an open source GIS that works on Linux platform (freeware), but most of the applications are in command line argument, necessitating a user friendly and cost effective graphical user interface (GUI). Keeping these aspects in mind, Geographic Resources Decision Support System (GRDSS) has been developed with functionality such as raster, topological vector, image processing, statistical analysis, geographical analysis, graphics production, etc. This operates through a GUI developed in Tcltk (Tool command language / Tool kit) under Linux as well as with a shell in X-Windows. GRDSS include options such as Import /Export of different data formats, Display, Digital Image processing, Map editing, Raster Analysis, Vector Analysis, Point Analysis, Spatial Query, which are required for regional planning such as watershed Analysis, Landscape Analysis etc. This is customised to Indian context with an option to extract individual band from the IRS (Indian Remote Sensing Satellites) data, which is in BIL (Band Interleaved by Lines) format. The integration of PostgreSQL (a freeware) in GRDSS aids as an efficient database management system.
Resumo:
Wetlands are the most productive and biologically diverse but very fragile ecosystems. They are vulnerable to even small changes in their biotic and abiotic factors. In recent years, there has been concern over the continuous degradation of wetlands due to unplanned developmental activities. This necessitates inventorying, mapping, and monitoring of wetlands to implement sustainable management approaches. The principal objective of this work is to evolve a strategy to identify and monitor wetlands using temporal remote sensing (RS) data. Pattern classifiers were used to extract wetlands automatically from NIR bands of MODIS, Landsat MSS and Landsat TM remote sensing data. MODIS provided data for 2002 to 2007, while for 1973 and 1992 IR Bands of Landsat MSS and TM (79m and 30m spatial resolution) data were used. Principal components of IR bands of MODIS (250 m) were fused with IRS LISS-3 NIR (23.5 m). To extract wetlands, statistical unsupervised learning of IR bands for the respective temporal data was performed using Bayesian approach based on prior probability, mean and covariance. Temporal analysis of wetlands indicates a sharp decline of 58% in Greater Bangalore attributing to intense urbanization processes, evident from a 466% increase in built-up area from 1973 to 2007.