986 resultados para Temperature tolerance
Resumo:
Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.
Resumo:
This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37
Resumo:
Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.
Resumo:
This study uses chlorophyll a fluorescence to examine the effect of environmentally relevant (1-4 h) exposures of thermal stress (35-45 [deg]C) on seagrass photosynthetic yield in seven tropical species of seagrasses. Acute response of each tropical seagrass species to thermal stress was characterised, and the capacity of each species to tolerate and recover from thermal stress was assessed. Two fundamental characteristics of heat stress were observed. The first effect was a decrease in photosynthetic yield (Fv / Fm) characterised by reductions in F and Fm'. The dramatic decline in Fv / Fm ratio, due to chronic inhibition of photosynthesis, indicates an intolerance of Halophila ovalis, Zostera capricorni and Syringodium isoetifolium to ecologically relevant exposures of thermal stress and structural alterations to the PhotoSystem II (PSII) reaction centres. The decline in Fm' represents heat-induced photoinhibition related to closure of PSII reaction centres and chloroplast dysfunction. The key finding was that Cymodocea rotundata, Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were more tolerant to thermal stress than H. ovalis, Z. capricorni and S. isoetifolium. After 3 days of 4 h temperature treatments ranging from 25 to 40 [deg]C, C. rotundata, C. serrulata and H. uninervis demonstrated a wide tolerance to temperature with no detrimental effect on Fv / Fm' qN or qP responses. These three species are restricted to subtropical and tropical waters and their tolerance to seawater temperatures up to 40 [deg]C is likely to be an adaptive response to high temperatures commonly occurring at low tides and peak solar irradiance. The results of temperature experiments suggest that the photosynthetic condition of all seagrass species tested are likely to suffer irreparable effects from short-term or episodic changes in seawater temperatures as high as 40-45 [deg]C. Acute stress responses of seagrasses to elevated seawater temperatures are consistent with observed reductions in above-ground biomass during a recent El Nino event.
Resumo:
Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.
Resumo:
The specialist tingid, Carvalhotingis visenda, is a biological control agent for cat's claw creeper, Macfadyena unguis-cati (Bignoniaceae). Cat's claw creeper is an invasive liana with a wide climatic tolerance, and for biological control to be effective the tingid must survive and develop over a range of temperatures. We evaluated the effect of constant temperatures (0-45°C) on the survival and development of C. visenda. Adults showed tolerance for wider temperature ranges (0-45°C), but oviposition, egg hatching and nymphal development were all affected by both high (>30°C) and low (<20°C) temperatures. Temperatures between 20°C and 30°C are the most favourable for adult survival, oviposition, egg hatching and nymphal development. The ability of adults and nymphs to survive for a few days at high (40°C and 45°C) and low (0°C and 5°C) temperatures suggest that extreme temperature events, which usually occur for short durations (hours) in cat's claw creeper infested regions in Queensland and New South Wales states are not likely to affect the tingid population. The potential number of generations (egg to adult) the tingid can complete in a year in Australia ranged from three to eight, with more generations in Queensland than in New South Wales.
Resumo:
Abstract In weed biocontrol, similarity of abiotic factors between the native and introduced range of a biocontrol agent is critical to its establishment and effectiveness. This is particularly the case for weeds that have a wide geographical distribution in the native range. For such weeds, the choice of a specialist insect that has narrow tolerance limits to important abiotic factors can diminish its ability to be an effective biocontrol agent. The membracid Aconophora compressa was introduced in Australia from Mexico for biocontrol of Lantana camara, a plant with a wide climatic tolerance. In this study we investigated the effect of constant and alternating temperatures on A. compressa survival. Longevity of adults and nymphs declined with increasing temperatures, and at 39°C individuals survived for less than a day. At lower temperatures, nymphs survived longer than adults. Survival at alternating temperatures was longer than at constant temperatures, but the general trend of lower survival at higher temperatures remained. Spatially and temporally, the climatic tolerance of A. compressa appears to be a subset of that of lantana, thereby limiting its potential impact.
Resumo:
Significant genotypic differences in tolerance of pollen germination and seed set to high temperatures have been shown in sorghum. However, it is unclear whether differences were associated with variation in either the threshold temperature above which reproductive processes are affected, or in the tolerance to increased temperature above that threshold. The objectives of this study were to (a) dissect known differences in heat tolerance for a range of sorghum genotypes into differences in the threshold temperature and tolerance to increased temperatures, (b) determine whether poor seed set under high temperatures can be compensated by increased seed mass, and (c) identify whether genotypic differences in heat tolerance in a controlled environment facility (CEF) can be reproduced in field conditions. Twenty genotypes were grown in a CEF under four day/night temperatures (31.9/21.0 °C, 32.8/21.0 °C, 36.1/21.0 °C, and 38.0/21.0 °C), and a subset of six genotypes was grown in the field under four different temperature regimes around anthesis. The novelty of the findings in this study related to differences in responsiveness to high temperature—genotypic differences in seed set percentage were found for both the threshold temperature and the tolerance to increased maximum temperature above that threshold. Further, the response of seed set to high temperature in the field study was well correlated to that in the CEF (R2 = 0.69), although the slope was significantly less than unity, indicating that heat stress effects may have been diluted under the variable field conditions. Poor seed set was not compensated by increased seed mass in either CEF or field environments. Grain yield was thus closely related to seed set percentage. This result demonstrates the potential for development of a low-cost field screening method to identify high-temperature tolerant varieties that could deliver sustainable yields under future warmer climates.
Resumo:
We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.
Resumo:
Delamination is one of the most commonly occurring defects in laminated composite structures. Under operating fatigue loads on the laminate this delamination could grow and totally delaminate certain number of layers from the base laminate. This will result in loss of both compressive residual strength and buckling margins available. In this paper, geometrically non-linear analysis and evaluation of Strain Energy Release Rates using MVCCI technique is presented. The problems of multiple delamination, effect of temperature exposure and delamination from pin loaded holes are addressed. Numerical results are presented to draw certain inferences of importance to design of high technology composite structures such as aircraft wing.
Resumo:
Changes in sustainability of aquatic ecosystems are likely to be brought about by the global warming that has been widely predicted. In this article, the effects of water temperature on water-bodies (lakes, oceans and rivers) are reviewed followed by the effects of temperature on aquatic organisms. Almost all aquatic organisms require exogenous heat before they can metabolise efficiently. An organism that is adapted to warm temperatures will have a higher rate of metabolism of food organisms and this increases feeding rate. In addition, an increase in temperature raises the metabolism of food organisms, so food quality can be altered. Where populations have a different tolerance to temperature the result is habitat partitioning. One effect of prolonged high temperature is that it causes water to evaporate readily. In the marine littoral this is not an important problem as tides will replenish water in pools. Small rain pools are found in many tropical countries during the rainy season and these become incompletely dried at intervals. The biota of such pools must have resistant stages within the life cycle that enable them to cope with periods of drying. The most important potential effects of global warming include (i) the alteration of existing coastlines, (ii) the development of more deserts on some land masses, (iii) higher productivity producing higher crop production but a greater threat of algal blooms and (iv) the processing of organic matter at surface microlayers.
Resumo:
P. monodon larvae were studied for the effects of temperature, ammonia, and nitrite on survival. Toxicity levels of nitrite were found to vary with larval stage. Larvae could tolerate ammonia up to about 10 ppm, with the effect more clearly shown by the zoea stage. Survival and growth were not significantly affected by temperature, although moulting was enhanced at temperatures higher than 29 C. Larvae of P. monodon have lower tolerance toward nitrite and ammonia compared to postlarvae. Although high survival was obtained at low levels of nitrite and ammonia, it is still necessary to know their effects on metabolism, in order to examine possible biochemical parameters for diagnosing sublethal toxicity or stress.
Resumo:
This paper investigates the effects of design parameters, such as cladding and coolant material choices, and operational phenomena, such as creep and fission product decay heat, on the tolerance of Accelerator Driven Subcritical Reactor (ADSR) fuel pin cladding to beam interruptions. This work aims to provide a greater understanding of the integration between accelerator and nuclear reactor technologies in ADSRs. The results show that an upper limit on cladding operating temperature of 550 °C is appropriate, as higher values of temperature tend to accelerate creep, leading to cladding failure much sooner than anticipated. The effect of fission product decay heat is to reduce significantly the maximum stress developed in the cladding during a beam-trip-induced transient. The potential impact of irradiation damage and the effects of the liquid metal coolant environment on the cladding are discussed. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
There were large losses of exotic species Elodea nuttallii during summer in eutrophic lakes of the middle and lower reaches of the Yanatze River, China. To investigate the main causes, the heat tolerance of E. nuttallii was studied and compared with that of native species Ceratopkyllum demersum by using an aquaria system in the laboratory. Under 4500 lx light intensity and 12-h L/12-h D cycle, E. nuttallii cultured in 1/5 Hoaglands solution at 39 degrees C showed a positive growth rate during the first 15 days, and the growth rate was higher than that at 35 degrees C. But after 15 days, the growth rates became negative for those cultured both at 39 and 35 degrees C. However, the growth rate was positive for more than 20 days for those cultured at 25 degrees C. Under the same conditions, the growth rate, productivity and chlorophyll content of E. nuttallii were significantly higher than that of C. demersum. Heat tolerance of E. nuttallii was also stronger than that of C. demersum. The optimal temperature for the growth of the two plants depended on the experimental period: both plants grew at an optimal rate at higher temperature if the experimental period was short; nevertheless the plants achieved optimal growth at a lower temperature if the experiment was conducted for a longer period. At the same light intensity, the heat tolerance of C. demersum in tap water with sediment was markedly stronger than that of E. nuttallii at 39 degrees C. Average growth rate of C. demersum was 4.5 times higher than that of E. nuttallii within 25 days. The positive growth period lasted for less than 25 days for E. nuttallii and for more than 25 days for C. demersum. When they were cultured in 1/5 Hoaglands solution and in tap water with sediment, the growth rate of C. demersum increased from 0.4 to 79.4 mg/d.g fresh weight (FW) within 20 days. E. nuttallii increased from 8.3 to 24.4 mg/d-g FW within 20 days. Both grew better in tap water with sediment than in 1/5 Hoaglands solution. The results demonstrated that the nutritional status of the water other than the high temperature affected the heat tolerance of E. nuttallii during summer. E. nuttallii has great ecological safe risk in China.