54 resultados para Telenomus podisi
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The biological characteristics of Telenomus remus Nixon, 1937 (Hymenoptera: Platygastridae) on eggs of Spodoptera albula (Walker, 1857); S. cosmioides Walker 1858, S. eridania (Cramer, 1782); and S. frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) were evaluated under different temperatures (19, 22, 25, 28, 31, and 34 degrees C +/- 1 degrees C). The duration of the T remus egg-to-adult period on eggs of all four Spodoptera species and the longevity of adults of T. remus were both inversely proportional to the increase in temperature. Parasitoid emergence was higher than 80% at temperatures from 19 to 28 degrees C when the parasitoid was reared on eggs of S. eridania and S. frugiperda. Differently, when the parasitoid was reared on eggs of S. albula and S. cosmioides, T. remus emergence at rates of 80% or higher just occurred from 22 to 25 degrees C and at 22 degrees C, respectively. At 34 degrees C, this parameter was lower than 30% for T reams reared in all hosts. The sex ratio was 64-86% females, except for T. remus in S. cosmioides eggs at 34 C, in which temperature it was 39%. The estimated thermal requirements of T. remus, for the thermal constant (K) and the base temperature (T(base)), were: 125.39 DD and 15.139 degrees C; 125.56 DD and 14.912 degrees C; 142.98 DD and 14.197 degrees C; and 149.16 DD and 13.846 degrees C, for S. cosmioides, S. frugiperda, S. albula, and S. eridania, respectively. In general, T. remus showed good parasitism potential on all the hosts, although eggs of S. frugiperda, S. eridania, and S. albula proved to be the most suitable for mass rearing of T reams in the laboratory. Eggs of S. cosmioides are less suitable because of the lower parasitoid emergence observed at most of the temperatures with exception of 22 degrees C.
Resumo:
Brassolis sophorae (L.) (Lep., Brassolidae) is an old and important pest of some Brazilian Palmae, among which Cocos nucifera L. and Copemicia cerifera Mart, are the most valuable economically. Eggs are attacked by Anastatus reduvii (Howard) (Eupel-midae) and Telenomus sp. and Telenomus nigrocoxdlis Ashmead (Scelionidae), the larvae being destroyed by Withemia pinguis (F.) (Tachinidae). Six other insects devellop inside the pupae : Xanthozona melanopyga (Wiedmann) and Belvosia sp. (Tachinidae) and the Hymenoptera Brachymeria annulata (F.), B. incerta (Cres-son), Spilochalcis nigrifrons Cameron and S. morleyi Ashmead (Chalcicidae), the last of them being principally treated in this paper. A species of Sarcophagidae (Sarcophaga lambens Wiedmann) was also noted, some flies being gotten from a single pupa. In Piracicaba (State of S. Paulo, Brasil), according to the Author's observations, B. sophorae principal enemy is X. melanopyga, to which our attention has to be directed in a biological fight against the mentioned Brassolidae. The reported Telenomus sp. is also very harmful to B. sophorae eggs. In the whole zone of its distribution, the hosts of B. sophorae caterpillars are Palmae plants, appearing sporadically feeding on banana and sugar cane leaves.
Resumo:
Oitenta e uma macaubeiras (A. sclerocarpa) foram derrubadas e dissecadas na periferia de Belo Horizonte, no período de abril/ 1979 a julho/1980. Foram capturados 463 exemplares de Rhodnius neglectus, com uma taxa de infestação das palmeiras de 60,5% e uma média de 9,45% triatomineos/palmeira positiva. O R. neglectus nesta região parece apresentar uma unica geração anual, com possibilidade de duas, sendo que o periodo de oviposição se relaciona com os meses quentes do ano, coincidindo com a predominância de formas jovens sobre os adultos. A observação sugere que a densidade populacional do R. neglectus no seu ecotopo natural possa estar relacionada com a disponibilidade de alimento e com a presença de predadores como o Telenomus sp., formigas, aranhas, hemipteros, escorpiões e pseudo-escorpiões. O indice global de infecção pelo Trypanosoma cruzi foi de 15,9%, indicando o R. neglectus como um importante vetor silvestre deste tripanosomatídeo cuja principal fonte e constituída por marsupiais. O R. neglectus na regiao encontra-se estreitamente associado a palmeira de macaúba, e as aves que as frequentam constituem sua principal fonte alimentar. As observações não sugerem o R.neglectus como uma espécie transmissora do T. cruzi ao homem nesta região.
Resumo:
Cette étude porte sur l’écologie saisonnière des parasitoïdes des œufs de l’arpenteuse de la pruche (Lepidoptera : Geometridae), un important défoliateur du Québec (Canada). Premièrement, nous décrivons les patrons saisonniers de parasitisme d’hôtes sentinelles par Telenomus coloradensis, T. droozi, T. flavotibiae (Hymenoptera : Scelionidae), et Trichogramma spp., dans la région du Bas-Saint-Laurent. Telenomus flavotibiae et Trichogramma spp. parasitent rarement les œufs de l’arpenteuse de la pruche alors que T. coloradensis et T. droozi sont très abondants au printemps. En laboratoire, la convenance des hôtes pour T. coloradensis diminue rapidement avec leur développement embryonnaire au printemps, affectant négativement les niveaux de parasitisme, ainsi que la survie, la taille, le temps de développement et la longévité de la progéniture. Telenomus coloradensis et T. droozi sont actifs très tôt en saison, alors que les températures sont froides (4°C) pour profiter du développement embryonnaire peu avancé de l’hôte. À partir de paramètres empiriques, nous estimons que la progéniture de T. coloradensis issue du parasitisme printanier émerge au milieu de l’été, alors que l’hôte est totalement absent de l’environnement forestier. La nouvelle génération de femelles serait donc susceptible d’entrer précocement en diapause reproductive. D’ailleurs, nos résultats de laboratoire démontrent qu’une période de privation d’hôtes affecte négativement l’activité parasitaire de T. coloradensis. Ce phénomène pourrait expliquer les niveaux très faibles de parasitisme des œufs de l’arpenteuse de la pruche à l’automne. Étonnamment toutefois, les hôtes en début de diapause (à l’automne) sont de meilleure qualité énergétique que les hôtes en post-diapause (au printemps). Alors que des études précédentes ont démontré que T. coloradensis peut survivre à l’hiver en tant qu’immature à l’intérieur des hôtes, nos résultats indiquent que ce sont principalement les femelles fertilisés qui passent l’hiver en diapause reproductive, avec un point de surfusion automnal moyen de -30,6°C.
Resumo:
In recent crop seasons, the whitefly, Bemisia tabaci biotype B has become a serious pest in soybean crops due to high infestations and its control difficulties. Therefore, it is important to search control alternatives in the integrated pest management approach. Thus, it was evaluated in this study the efficacy of the whitefly control using different insecticides in greenhouse conditions and their selectivity to the parasitoids Encarsia formosa, Trichogramma pretiosum and Telenomus remus. Buprofezin 150 g.a.i. ha(-1) + mineral oil 0.2% v/v and pyriproxyfen 100 g.a.i. ha(-1) were considered the best options for the whitefly management due to combine good pest control efficacy with higher selectivity to the parasitoids except Encarsia formosa for which no treatment was classified as harmless. Betacyflutrin 9.375 + imidacloprid 75 g.i.a. ha(-1) was efficient on controlling whiteflies nymphs but was not harmless to the studied natural enemies. In general, the treatments including pyretroids compounds (betacyflutrin 9.375 + imidacloprid 75 + spiromesifen 60, betacyflutrin 9.375 + imidacloprid 75 and lambda-cyhalothrin 26.5 + thiametoxan 35.25 g.a.i. ha(-1)) were the most harmful to the evaluated parasitoids and therefore it use should be avoid whenever possible.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Egg parasitism of Trichogramma pretiosum strain RV when presented with eggs of Anticarsia gemmatalis and Pseudoplusia includens was investigated at 18, 20, 22, 25, 28, 30 and 32 degrees C. The number of eggs parasitized per day decreased for both hosts as a function of the age of parasitoids, reaching 80% of lifetime parasitism more rapidly as temperature increased; on the 4th day at 32 degrees C and on the 12th day at 18 degrees C. The lifetime number of parasitized P. includens eggs achieved by the parasitoid maintained at 20 degrees C (44.95 +/- 3.94) differed from the results recorded at 32 degrees C (28.5 +/- 1.33). Differently, the lifetime number of A. gemmatalis parasitized eggs did not differ among the temperatures. When T. pretiosum reached 100% of lifetime parasitism, each adult female had parasitized from 28.5 +/- 1.33 to 44.95 +/- 3.94 and from 29.58 +/- 2.80 to 45.36 +/- 4.50 P. includens and A. gemmatalis eggs, respectively. Also, the longevity of these adult T. pretiosum females, for which P. includens or A. gemmatalis eggs were offered, was inversely correlated with temperature. Not only were the survival curves of those adult T. pretiosum females of type I when they were presented with eggs of A. gemmatalis but also with eggs of P. includens, i.e., there was an increase in the mortality rate with time as the temperature increased. In conclusion, T. pretiosum strain RV parasitism was impacted by temperature when on both host eggs; however, the parasitoid still exhibited high survival and, more importantly, high number of parasitized A. gemmatalis and P. includens eggs even at the extremes tested temperatures of 18 and 32 degrees C. Those results indicate that T. pretiosum strain RV might be well adapted to this studied temperature range and, thus, be potentially suitable for use in biological control programs of P. includens and A. gemmatalis in different geographical areas that fits in this range. It is important to emphasize the results here presented are from laboratory studies and, therefore, field trials still need to be carried out in the future with this strain in order to support the full development of the technology intend to use this egg parasitoid in soybean fields worldwide. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Herbivore-induced plant volatiles are important host finding cues for larval parasitoids, and similarly, insect oviposition might elicit the release of plant volatiles functioning as host finding cues for egg parasitoids. We hypothesized that egg parasitoids also might utilize HIPVs of emerging larvae to locate plants with host eggs. We, therefore, assessed the olfactory response of two egg parasitoids, a generalist, Trichogramma pretiosum (Tricogrammatidae), and a specialist, Telenomus remus (Scelionidae) to HIPVs. We used a Y-tube olfactometer to tests the wasps’ responses to volatiles released by young maize plants that were treated with regurgitant from caterpillars of the moth Spodoptera frugiperda (Noctuidae) or were directly attacked by the caterpillars. The results show that the generalist egg parasitoid Tr. pretiosum is innately attracted by volatiles from freshly-damaged plants 0–1 and 2–3 h after regurgitant treatment. During this interval, the volatile blend consisted of green leaf volatiles (GLVs) and a blend of aromatic compounds, mono- and homoterpenes, respectively. Behavioral assays with synthetic GLVs confirmed their attractiveness to Tr. pretiosum. The generalist learned the more complex volatile blends released 6–7 h after induction, which consisted mainly of sesquiterpenes. The specialist T. remus on the other hand was attracted only to volatiles emitted from fresh and old damage after associating these volatiles with oviposition. Taken together, these results strengthen the emerging pattern that egg and larval parasitoids behave in a similar way in that generalists can respond innately to HIPVs, while specialists seems to rely more on associative learning.