870 resultados para TelEduc Platform
Resumo:
We introduce the MiniOrb platform, a combined sensor and interaction platform built to understand and encourage the gathering of data around personal indoor climate preferences in office environments. The platform consists of a sensor device, gathering localised environmental data and an attached tangible interaction and ambient display device. This device allows users to understand their local environment and record preferences with regards to their preferred level of office comfort. In addition to the tangible device we built a web-based mobile application that allowed users to record comfort preferences through a different interface. This paper describes the design goals and technical setup of the MiniOrb platform.
Resumo:
Education in the 21st century demands a model for understanding a new culture of learning in the face of rapid change, open access data and geographical diversity. Teachers no longer need to provide the latest information because students themselves are taking an active role in peer collectives to help create it. This paper examines, through an Australian case study entitled ‘Design Minds’, the development of an online design education platform as a key initiative to enact a government priority for statewide cultural change through design-based curriculum. Utilising digital technology to create a supportive community, ‘Design Minds’ recognises that interdisciplinary learning fostered through engagement will empower future citizens to think, innovate, and discover. This paper details the participatory design process undertaken with multiple stakeholders to create the platform. It also outlines a proposed research agenda for future measurement of its value in creating a new learning culture, supporting regional and remote communities, and revitalising frontline services. It is anticipated this research will inform ongoing development of the online platform, and future design education and research programs in K-12 schools in Australia.
Resumo:
A novel platform consisting of a multilayered substrate, activated graphite-like carbon film, and dense forest of long, vertically-aligned multiwall carbon nanotubes grown by the chemical vapor deposition is designed, fabricated, and tested for covalent immobilization of enzymatic biocatalysts with the aim of protecting them from shear forces and microbial attacks present in bioreactors. The covalent bonding ensures enzyme retention in a flow, while the dense nanotube forest may serve as a protection of the enzymes from microbial attack without impeding the flow of reactants and products. This platform was demonstrated for the two reference enzymes, horseradish peroxidase and catalase, which were immobilized without degrading their biological activity. This combination of an activated carbon layer for an efficient immobilization of biocatalysts with a protective layer of inert carbon nanotubes could dramatically improve the efficiency and longevity of enzymatic bio-catalysis employed in a large variety of advanced biotechnological processes.
Resumo:
Low-temperature plasmas in direct contact with arbitrary, written linear features on a Si wafer enable catalyst-free integration of carbon nanotubes into a Si-based nanodevice platform and in situ resolution of individual nucleation events. The graded nanotube arrays show reliable, reproducible, and competitive performance in electron field emission and biosensing nanodevices.
Resumo:
A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors.
Resumo:
There is nothing new under the sun – so the saying goes, and in a digital age of recording oral histories, this holds true. Despite advances and innovations across the board in information and communication technology in the field of oral history it is essentially only the devices we record on that have changed. However, what has emerged is a plethora of ways that oral history interviews can be used to produce multimedia, or transmedia storytelling outputs- for exhibitions in public institutions, schools and by communities to engage interested groups, and in families and by individuals wanting to play with new ways of telling their family stories and histories. In 2010, QUT’s Creative Industries introduced a postgraduate unit called Transmedia Storytelling: From Interviewing to Multi-Platform, which was the first postgraduate course of its kind in Australia. Based in a Creative Writing discipline, but open to all coursework Masters, PhD, Research Masters and Doctorate of Creative Industries students, this unit introduces students to the theory and practice of semi-structured interviewing techniques, oral history conventions and applications, and the art of storytelling across various platforms.
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
We have developed a new protein microarray (Immuno-Flow Protein Platform, IFPP) that utilizes a porous nitrocellulose (NC) membrane with printed spots of capture probes. The sample is pumped actively through the NC membrane, to enhance binding efficiency and introduce stringency. Compared to protein microarrays assayed with the conventional incubation-shaking method the rate of binding is enhanced on the IFPP by at least a factor of 10, so that the total assay time can be reduced drastically without compromising sensitivity. Similarly, the sensitivity can be improved. We demonstrate the detection of 1 pM of C-reactive protein (CRP) in 70 mu L of plasma within a total assay time of 7 min. The small sample and reagent volumes, combined with the speed of the assay, make our IFPP also well-suited for a point-of-care/near-patient setting. The potential clinical application of the IFPP is demonstrated by validating CRP detection both in human plasma and serum samples against standard clinical laboratory methods.
Resumo:
PURPOSE: The prevalence of anaplastic lymphoma kinase (ALK) gene fusion (ALK positivity) in early-stage non-small-cell lung cancer (NSCLC) varies by population examined and detection method used. The Lungscape ALK project was designed to address the prevalence and prognostic impact of ALK positivity in resected lung adenocarcinoma in a primarily European population. METHODS: Analysis of ALK status was performed by immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) in tissue sections of 1,281 patients with adenocarcinoma in the European Thoracic Oncology Platform Lungscape iBiobank. Positive patients were matched with negative patients in a 1:2 ratio, both for IHC and for FISH testing. Testing was performed in 16 participating centers, using the same protocol after passing external quality assessment. RESULTS: Positive ALK IHC staining was present in 80 patients (prevalence of 6.2%; 95% CI, 4.9% to 7.6%). Of these, 28 patients were ALK FISH positive, corresponding to a lower bound for the prevalence of FISH positivity of 2.2%. FISH specificity was 100%, and FISH sensitivity was 35.0% (95% CI, 24.7% to 46.5%), with a sensitivity value of 81.3% (95% CI, 63.6% to 92.8%) for IHC 2+/3+ patients. The hazard of death for FISH-positive patients was lower than for IHC-negative patients (P = .022). Multivariable models, adjusted for patient, tumor, and treatment characteristics, and matched cohort analysis confirmed that ALK FISH positivity is a predictor for better overall survival (OS). CONCLUSION: In this large cohort of surgically resected lung adenocarcinomas, the prevalence of ALK positivity was 6.2% using IHC and at least 2.2% using FISH. A screening strategy based on IHC or H-score could be envisaged. ALK positivity (by either IHC or FISH) was related to better OS.
Resumo:
This article describes the detection of DNA mutations using novel Au-Ag coated GaN substrate as SERS (surface-enhanced Raman spectroscopy) diagnostic platform. Oligonucleotide sequences corresponding to the BCR-ABL (breakpoint cluster region-Abelson) gene responsible for development of chronic myelogenous leukemia were used as a model system to demonstrate the discrimination between the wild type and Met244Val mutations. The thiolated ssDNA (single-strand DNA) was immobilized on the SERS-active surface and then hybridized to a labeled target sequence from solution. An intense SERS signal of the reporter molecule MGITC was detected from the complementary target due to formation of double helix. The SERS signal was either not observed, or decreased dramatically for a negative control sample consisting of labeled DNA that was not complementary to the DNA probe. The results indicate that our SERS substrate offers an opportunity for the development of novel diagnostic assays.
Resumo:
Plants are an attractive alternative to conventional expression systems for the production of recombinant proteins and useful biologics, however, the economic viability of plant made proteins is strongly yield dependent. This study aimed to improve transgene expression levels in the plant host Nicotiana benthamiana using the Agroinfiltration transient expression platform. Independent investigation of the physical, chemical and genetic features associated with Agroinfiltration identified factors that improved transformation frequencies, elevated transgene expression levels and ultimately improved protein yield. The major outcome of this research was a novel hyper-expression system for biofarming recombinant proteins in plants.
Resumo:
With the increase in complexity of engineering projects and design quality in the construction industry, the traditional two-dimensional "Information Island" approach to design is becoming less able to meet current design needs due to its lack of coordination and information sharing. Collaborative design using a Build Information Modeling (BIM) technology platform promises to provide an effective means of designing and communicating through networking and real-time data sharing. This paper first analyzes the shortcomings of the two-dimensional design process and the potential application of collaborative design. By combining the attributes of BIM, a preliminary BIM-based building design collaborative platform is developed to improve the design approach and support a more collaborative design process. A real-life case is presented to demonstrate the feasibility and validity of the platform and its use in practice. From this, it is shown that BIM has the potential to realize effective information sharing and reduce errors, thereby improving design quality. The BIM-based building design collaborative platform presented is expected to provide the support needed for the extensive application of BIM in collaborative design and promote a new attitude to project management.