921 resultados para Takagi Sugeno fuzzy models
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we present a new scheme for off-line recognition of multi-font numerals using the Takagi-Sugeno (TS) model. In this scheme, the binary image of a character is partitioned into a fixed number of sub-images called boxes. The features consist of normalized vector distances (gamma) from each box. Each feature extracted from different fonts gives rise to a fuzzy set. However, when we have a small number of fonts as in the case of multi-font numerals, the choice of a proper fuzzification function is crucial. Hence, we have devised a new fuzzification function involving parameters, which take account of the variations in the fuzzy sets. The new fuzzification function is employed in the TS model for the recognition of multi-font numerals.
Resumo:
Este trabalho avalia o desempenho de um controlador fuzzy (tipo Takagi-Sugeno-Kang) quando, utilizando tecnologia sem fio para conectar as entradas e a saída do controlador aos sensores/atuadores, sofre perda das informações destes canais, resultado de perdas de pacotes. Tipicamente são utilizados controladores PID nas malhas de controle. Assim, o estudo realizado compara os resultados obtidos com os controladores fuzzy com os resultados dos controladores PID. Além disso, o trabalho visa estudar o comportamento deste controlador implementado em uma arquitetura microprocessada utilizando números inteiros nos cálculos, interpolação com segmentos de reta para as funções de pertinência da entrada e singletons nas funções de pertinência da saída. Para esse estudo foi utilizado, num ambiente Matlab/Simulink, um controlador fuzzy e o aplicativo True Time para simular o ambiente sem fio. Desenvolvido pelo Departamento de Controle Automático da Universidade de Lund, o True Time é baseado no Matlab/Simulink e fornece todas as ferramentas necessárias para a criação de um ambiente de rede (com e sem fio) virtual. Dado o paradigma de que quanto maior for a utilização do canal, maior a degradação do mesmo, é avaliado o comportamento do sistema de controle e uma proposta para diminuir o impacto da perda de pacotes no controle do sistema, bem como o impacto da variação das características internas da planta e da arquitetura utilizada na rede. Inicialmente são realizados ensaios utilizando-se o controlador fuzzy virtual (Simulink) e, posteriormente, o controlador implementado com dsPIC. Ao final, é apresentado um resumo desses ensaios e a comprovação dos bons resultados obtidos com um controlador fuzzy numa malha de controle utilizando uma rede na entrada e na saída do controlador.
Resumo:
Q. Shen and R. Jensen, 'Selecting Informative Features with Fuzzy-Rough Sets and its Application for Complex Systems Monitoring,' Pattern Recognition, vol. 37, no. 7, pp. 1351-1363, 2004.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolative reasoning via scale and move transformation. IEEE Transactions on Fuzzy Systems, 14(2):340-359.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolation with generalized representative values. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 161-171.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolative and extrapolative reasoning: a practical approach. IEEE Transactions on Fuzzy Systems, 16(1):13-28, 2008.
Resumo:
Complete supervised training algorithms for B-spline neural networks and fuzzy rule-based systems are discussed. By interducing the relationship between B-spline neural networks and certain types of fuzzy models, training algorithms developed initially for neural networks can be adapted by fuzzy systems.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
Diese Arbeit behandelt die Problemstellung der modellbasierten Fehlerdiagnose für Lipschitz-stetige nichtlineare Systeme mit Unsicherheiten. Es wird eine neue adaptive Fehlerdiagnosemethode vorgestellt. Erkenntnisse und Verfahren aus dem Bereich der Takagi-Sugeno (TS) Fuzzy-Modellbildung und des Beobachterentwurfs sowie der Sliding-Mode (SM) Theorie werden genutzt, um einen neuartigen robusten und nichtlinearen TS-SM-Beobachter zu entwickeln. Durch diese Zusammenführung lassen sich die jeweiligen Vorteile beider Ansätze miteinander kombinieren. Bedingungen zur Konvergenz des Beobachters werden als lineare Matrizenungleichungen (LMIs) abgeleitet. Diese Bedingungen garantieren zum einen die Stabilität und liefern zum anderen ein direktes Entwurfsverfahren für den Beobachter. Der Beobachterentwurf wird für die Fälle messbarer und nicht messbarer Prämissenvariablen angegeben. Durch die TS-Erweiterung des in dieser Arbeit verwendeten SM-Beobachters ist es möglich, den diskontinuierlichen Rückführterm mithilfe einer geeigneten kontinuierlichen Funktion zu approximieren und dieses Signal daraufhin zur Fehlerdiagnose auszuwerten. Dies liefert eine Methodik zur Aktor- und Sensorfehlerdiagnose nichtlinearer unsicherer Systeme. Gegenüber anderen Ansätzen erlaubt das Vorgehen eine quantitative Bestimmung und teilweise sogar exakte Rekonstruktion des Fehlersignalverlaufs. Darüber hinaus ermöglicht der Ansatz die Berechnung konstanter Fehlerschwellen direkt aus dem physikalischen Vorwissen über das betrachtete System. Durch eine Erweiterung um eine Betriebsphasenerkennung wird es möglich, die Schwellenwerte des Fehlerdiagnoseansatzes online an die aktuelle Betriebsphase anzupassen. Hierdurch ergibt sich in Betriebsphasen mit geringen Modellunsicherheiten eine deutlich erhöhte Fehlersensitivität. Zudem werden in Betriebsphasen mit großen Modellunsicherheiten Falschalarme vermieden. Die Kernidee besteht darin, die aktuelle Betriebsphase mittels eines Bayes-Klassikators in Echtzeit zu ermitteln und darüber die Fehlerschwellen an die a-priori de nierten Unsicherheiten der unterschiedlichen Betriebsphasen anzupassen. Die E ffektivität und Übertragbarkeit der vorgeschlagenen Ansätze werden einerseits am akademischen Beispiel des Pendelwagens und anderseits am Beispiel der Sensorfehlerdiagnose hydrostatisch angetriebener Radlader als praxisnahe Anwendung demonstriert.
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system