989 resultados para TRIPLET-EXCITED RIBOFLAVIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of di-tert-butyl thioketone (1) and 2,2,4,4-tetramethylcyclobutylth ioketone (2) by singlet oxygen yields the corresponding sulfine and ketone; in the case of 1 the sulfine is the major product, whereas in 2 it is the ketone. 1,2,3-Dioxathietane has been suggested as the precursor for the ketones, and the zwitterionic/diradid peroxide is believed to be a common primary intermediate for both sulfine and ketone. Steric influence is felt both during primary interaction between singlet oxygen and thioketone and during the partitioning of the peroxide intermediate. Steric interaction is suggested as the reason for variations in the product distribution between 1 and 2. Singlet oxygen is also generated through energy transfer from the triplet state of thioketones. These excited states also directly react with oxygen to yield ketone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of di-tert-butyl thioketone (1) and 2,2,4,4-tetramethylcyclobutylth ioketone (2) by singlet oxygen yields the corresponding sulfine and ketone; in the case of 1 the sulfine is the major product, whereas in 2 it is the ketone. 1,2,3-Dioxathietane has been suggested as the precursor for the ketones, and the zwitterionic/diradid peroxide is believed to be a common primary intermediate for both sulfine and ketone. Steric influence is felt both during primary interaction between singlet oxygen and thioketone and during the partitioning of the peroxide intermediate. Steric interaction is suggested as the reason for variations in the product distribution between 1 and 2. Singlet oxygen is also generated through energy transfer from the triplet state of thioketones. These excited states also directly react with oxygen to yield ketone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential energy curves of the ground state and the first excited state of H2 are examined in terms of the electronic force acting on each nucleus. The results reveal the detailed course of events that occur when two hydrogen atoms with parallel and antiparallel electron spins approach one another from a large internuclear separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL)measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In benzene solution, C60 and C70 interact weakly in the ground state with amines having favourable oxidation potentials. Picosecond time-resolved absorption measurements show that on photoexcilation, the weak complexes undergo charge separation to produce ion pairs which in turn undergo fast geminate recombination either to produce the triplet state of the fullerenes or give back the ground slate of the complex, depending on the oxidation potential of the amine. Free-ion yield is generally negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The symmetrized density-matrix renormalization-group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation delta) to study the ordering of the lowest one-photon (1(1)B(u)(-)) and two-photon (2(1)A(g)(+)) states in one-dimensional conjugated systems with chain lengths N up to N = 80 sites. Three different types of crossovers are studied, as a function of U/t, delta, and N. The ''U crossover'' emphasizes the larger ionic character of the 2A(g) state compared to the lowest triplet excitation. The ''delta crossover'' shows strong dependence on both N and U/t. the ''N crossover'' illustrates the more localized nature of the 2A(g) excitation relative to the 1B(u) excitation at intermediate correlation strengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and direct observation of triplet 2,4-dimethylene-1,3- cyclobutanediyl (1), the non-Kekule isomer of benzene, is described. The biradical was generated by photolysis of 5,6-dimethylene-2,3- diazabicyclo[2.1.1]hex-2-ene (2) (which was synthesized in several steps from benzvalene) under cryogenic, matrix-isolation conditions. Biradical 1 was characterized by EPR spectroscopy (‌‌‌‌‌│D/hc│ =0.0204 cm^(-1), │E/hc│ =0.0028 cm^(-1)) and found to have a triplet ground state. The Δm_s= 2 transition displays hyperfine splitting attributed to a 7.3-G coupling to the ring methine and a 5.9-G coupling to the exocyclic methylene protons. Several experiments, including application of the magnetophotoselection (mps) technique in the generation of biradical 1, have allowed a determination of the zero-field triplet sublevels as x = -0.0040, y = +0.0136, and z = -0.0096 cm^(-1), where x and y are respectively the long and short in-plane axes and z the out-of-plane axis of 1.

Triplet 1 is yellow-orange and displays highly structured absorption (λ_(max)= 506 nm) and fluorescence (λ_(max) = 510 nm) spectra, with vibronic spacings of 1520 and 620 cm^(-1) for absorption and 1570 and 620 cm^(-1) for emission. The spectra were unequivocally assigned to triplet 1 by the use of a novel technique that takes advantage of the biradical's photolability. The absorption є = 7200 M^(-1) cm^(-1) and f = 0.022, establishing that the transition is spin-allowed. Further use of the mps technique has demonstrated that the transition is x-polarized, and the excited state 1s therefore of B_(1g) symmetry, in accord with theoretical predictions.

Thermolysis or direct photolysis of diazene 2 in fluid solution produces 2,4- dimethylenebicyclo[l.l.0]butane (3), whose ^(l)H NMR spectrum (-80°C, CD_(2)Cl_(2)) consists of singlets at δ 4.22 and 3.18 in a 2:1 ratio. Compound 3 is thermally unstable and dimerizes with second-order kinetics between -80 and -25°C (∆H^(‡) = 6.8 kcal mol^(-1), (∆s^(‡) = -28 eu) by a mechanism involving direct combination of two molecules of 3 in the rate-determining step. This singlet-manifold reaction ultimately produces a mixture of two dimers, 3,8,9- trimethylenetricyclo[5.1.1.0^(2,5)]non-4-ene (75) and trans-3,10-dimethylenetricyclo[6.2.0.0^(2,5)]deca-4,8-diene (76t), with the former predominating. In contrast, triplet-sensitized photolysis of 2, which leads to triplet 1, provides, in addition to 75 and 76t, a substantial amount of trans-5,10- dimethylenetricyclo[6.2.0.0^(3,6)]deca-3,8-diene (77t) and small amounts of two unidentified dimers.

In addition, triplet biradical 1 ring-closes to 3 in rigid media both thermally (77-140 K) and photochemically. In solution 3 forms triplet 1 upon energy transfer from sensitizers having relatively low triplet energies. The implications of the thermal chemistry for the energy surfaces of the system are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.

The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.

Part II

Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I of this thesis deals with 3 topics concerning the luminescence from bound multi-exciton complexes in Si. Part II presents a model for the decay of electron-hole droplets in pure and doped Ge.

Part I.

We present high resolution photoluminescence data for Si doped With Al, Ga, and In. We observe emission lines due to recombination of electron-hole pairs in bound excitons and satellite lines which have been interpreted in terms of complexes of several excitons bound to an impurity. The bound exciton luminescence in Si:Ga and Si:Al consists of three emission lines due to transitions from the ground state and two low lying excited states. In Si:Ga, we observe a second triplet of emission lines which precisely mirror the triplet due to the bound exciton. This second triplet is interpreted as due to decay of a two exciton complex into the bound exciton. The observation of the second complete triplet in Si:Ga conclusively demonstrates that more than one exciton will bind to an impurity. Similar results are found for Si:Al. The energy of the lines show that the second exciton is less tightly bound than the first in Si:Ga. Other lines are observed at lower energies. The assumption of ground state to ground-state transitions for the lower energy lines is shown to produce a complicated dependence of binding energy of the last exciton on the number of excitons in a complex. No line attributable to the decay of a two exciton complex is observed in Si:In.

We present measurements of the bound exciton lifetimes for the four common acceptors in Si and for the first two bound multi-exciton complexes in Si:Ga and Si:Al. These results are shown to be in agreement with a calculation by Osbourn and Smith of Auger transition rates for acceptor bound excitons in Si. Kinetics determine the relative populations of complexes of various sizes and work functions, at temperatures which do not allow them to thermalize with respect to one another. It is shown that kinetic limitations may make it impossible to form two-exciton complexes in Si:In from a gas of free excitons.

We present direct thermodynamic measurements of the work functions of bound multi-exciton complexes in Al, B, P and Li doped Si. We find that in general the work functions are smaller than previously believed. These data remove one obstacle to the bound multi-exciton complex picture which has been the need to explain the very large apparent work functions for the larger complexes obtained by assuming that some of the observed lines are ground-state to ground-state transitions. None of the measured work functions exceed that of the electron-hole liquid.

Part II.

A new model for the decay of electron-hole-droplets in Ge is presented. The model is based on the existence of a cloud of droplets within the crystal and incorporates exciton flow among the drops in the cloud and the diffusion of excitons away from the cloud. It is able to fit the experimental luminescence decays for pure Ge at different temperatures and pump powers while retaining physically reasonable parameters for the drops. It predicts the shrinkage of the cloud at higher temperatures which has been verified by spatially and temporally resolved infrared absorption experiments. The model also accounts for the nearly exponential decay of electron-hole-droplets in lightly doped Ge at higher temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A blue organic light-emitting device based on an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), which exhibits excited state intramolecular proton transfer (ESIPT), was presented. The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a blue organic light-emitting device having an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), that exhibits excited state intramolecular proton transfer (ESIPT). The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Electroluminescence spectra revealed a dominating peak at 450 nm and two additional peaks at 480 and 515 nm with a full width at half maximum of 50 nm. Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.