998 resultados para TRIGEMINAL MOTOR NUCLEUS
Resumo:
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estrogen deficiency has been associated with stress, anxiety and depression. Estrogen receptors have been identified in the median raphe nucleus (MRN). This structure is the main source of serotonergic projections to the hippocampus, a forebrain area implicated in the regulation of defensive responses and in the resistance to chronic stress. There is evidence showing that estrogen modulates 5-HT1A receptor functions. In the MRN, somatodendritic 5-HT1A receptors control the activity of serotonergic neurones by negative feedback. The present study evaluated the effect of intra-MRN injection of estradiol benzoate (EB) (600 or 1200 ng/0.2 mu l) on the performance of ovariectomised rats submitted to the elevated plus-maze test of anxiety and to the open-field test. Additionally, the same effect was evaluated with a previous intra-MRN injection of WAY 100635 (100 ng/0.2 mu l), an antagonist of 5-HT1A receptors. The results showed that both doses of EB increased the percentage of entries and the percentage of time spent into the open arms, suggestive of an anxiolytic effect. The highest dose of the drug also increased the number of entries into the enclosed arm and locomotion in the open field, indicating a stimulatory motor effect. WAY 100635 antagonised the effect of estradiol in the elevated plus-maze and in the open-field. The results show that estrogen receptors of the MRN are implicated in the regulation of anxiety-related behaviour. The results also support claims that the effect of estrogen involves a change in 5-HT1A receptor function. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigated the behavioral and molecular interactions between cocaine and nicotine, through evaluating locomotor activity, nicotine intravenous self-administration and gene expression. Locomotor sensitization was induced in male Wistar rats by repeated cocaine (20 mg/kg; i.p.) or saline injections once a day over 7 days. Three days after the last injection, rats were challenged with either saline or cocaine (15 mg/kg; i.p.) and the locomotor activity was measured. The very next day animals received either saline or nicotine (0.4 mg/kg; s.c.) and the locomotor cross-sensitization was tested. Animals were then prepared with intrajugular catheters for nicotine self-administration. Nicotine self-administration patterns were evaluated using fixed or progressive ratio schedules of reinforcement and a 24-h unlimited access binge. Immediately after the binge sessions animals were decapitated, the brains were removed and the nucleus accumbens was dissected. The dynorphin (DYN), μ-opioid receptor (mu opioid), neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), tropomyosin-related tyrosine kinase B receptor (TrkB) and corticotropin- releasing factor receptor type 1 (CRF-R1) gene expression were measured by the reverse transcription-polymerase chain reaction (RT-PCR). Pretreatment with cocaine caused sensitization of cocaine motor response and locomotor cross-sensitization with nicotine. In the self-administration experiments repeated cocaine administration caused an increase in the nicotine break point and nicotine intake during a 24 h binge session. © 2013 Elsevier Inc.
Resumo:
The trigeminal nerve, fifth equal of cranial nerves, a mixed nerve is considered by possessing motor and sensitive components. The sensitive portion takes to the Nervous System Central somesthesics information from the skin and mucous membrane of great area of the face, being responsible also for a neural disease, known as the Trigeminal Neuralgia. The aim of this study was to review the literature on the main characteristics of Trigeminal Neuralgia, the relevant aspects for the diagnosis and treatment options for this pathology. This neuralgia is characterized by hard pains and sudden, similar to electric discharges, with duration between a few seconds to two minutes, in the trigeminal nerve sensorial distribution. The pain is unchained by light touches in specific points in the skin of the face or for movements of the facial muscles, it can be caused by traumatic sequels or physiologic processes degenerative associate the vascular compression. Prevails in the senior population, frequently in the woman. In a unilateral way it attacks more the maxillary and mandibular divisions, rarely happens in a simultaneous way in the three branches of trigeminal nerve three branches.
Resumo:
It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Object. Over the past few decades, various authors have performed open or stereotactic trigeminal nucleotractotomy for the treatment of neuropathic facial pain resistant to medical treatment. Stereotactic procedures can be performed percutaneously under local anesthesia, allowing intraoperative neurological examination as a method for target refinement. However, blind percutaneous procedures in the region of the atlantooccipital transition carry a considerably high risk of vascular injuries that may bring prohibitive neurological deficit or even death. To avoid such complications, the authors present the first clinical use of microendoscopy to assist percutaneous radiofrequency trigeminal nucleotractotomy. The aim of this article is to demonstrate intradural microendoscopic visualization of the medulla oblongata through an atlantooccipital percutaneous approach. Methods. The authors present a case of severe postherpetic facial neuralgia in a patient who underwent the procedure and had satisfactory results. Stereotactic computational image planning for targeting the spinal trigeminal tract and nucleus in the posterolateral medulla was performed, allowing for an accurate percutaneous approach. immediately before radiofrequency electrode insertion, a tine endoscope was introduced to visualize the structures in the cisterna magna. Results. Microendoscopic visualization offered clear identification of the pial surface of the medulla oblongata and its blood vessels, the arachnoid membrane, cranial nerve rootlets and their entry zone, and larger vessels such as the vertebral arteries and the branches of the posterior inferior cerebellar artery. Conclusions. The initial application of this technique suggests that percutaneous microendoscopy may be useful for particular manipulation of the medulla oblongata, increasing the safety of the procedure and likely improving its effectiveness. (DOI: 10.3171/2011.8.JNS11618)
Resumo:
The mesopontine rostromedial tegmental nucleus (RMTg) is a mostly ?-aminobutyric acid (GABA)ergic structure believed to be a node for signaling aversive events to dopamine (DA) neurons in the ventral tegmental area (VTA). The RMTg receives glutamatergic inputs from the lateral habenula (LHb) and sends substantial GABAergic projections to the VTA, which also receives direct projections from the LHb. To further specify the topography of LHb projections to the RMTg and VTA, small focal injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were aimed at different subdivisions of the LHb. The subnuclear origin of LHb inputs to the VTA and RMTg was then confirmed by injections of the retrograde tracer cholera toxin subunit b into the VTA or RMTg. Furthermore, we compared the topographic position of retrogradely labeled neurons in the RMTg resulting from VTA injections with that of anterogradely labeled axons emerging from the LHb. As revealed by anterograde and retrograde tracing, LHb projections were organized in a strikingly topographic manner, with inputs to the RMTg mostly arising from the lateral division of the LHb (LHbL), whereas inputs to the VTA mainly emerged from the medial division of the LHb (LHbM). In the RMTg, profusely branched LHb axons were found in close register with VTA projecting neurons and were frequently apposed to the latter. Overall, our findings demonstrate that LHb inputs to the RMTg and VTA arise from different divisions of the LHb and provide direct evidence for a disynaptic pathway that links the LHbL to the VTA via the RMTg. J. Comp. Neurol. 520:12781300, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Reduced motor activity has been reported in schizophrenia and was associated with subtype, psychopathology and medication. Still, little is known about the neurobiology of motor retardation. To identify neural correlates of motor activity, resting state cerebral blood flow (CBF) was correlated with objective motor activity of the same day. Participants comprised 11 schizophrenia patients and 14 controls who underwent magnetic resonance imaging with arterial spin labeling and wrist actigraphy. Patients had reduced activity levels and reduced perfusion of the left parahippocampal gyrus, left middle temporal gyrus, right thalamus, and right prefrontal cortex. In controls, but not in schizophrenia, CBF was correlated with activity in the right thalamic ventral anterior (VA) nucleus, a key module within basal ganglia-cortical motor circuits. In contrast, only in schizophrenia patients positive correlations of CBF and motor activity were found in bilateral prefrontal areas and in the right rostral cingulate motor area (rCMA). Grey matter volume correlated with motor activity only in the left posterior cingulate cortex of the patients. The findings suggest that basal ganglia motor control is impaired in schizophrenia. In addition, CBF of cortical areas critical for motor control was associated with volitional motor behavior, which may be a compensatory mechanism for basal ganglia dysfunction.
Resumo:
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established treatment for advanced Parkinson's disease (PD) with disabling motor complications. However, stimulation may be beneficial at an earlier stage of PD when motor fluctuations and dyskinesia are only mild and psychosocial competence is still maintained. The EARLYSTIM trial was conducted in patients with recent onset of levodopa-induced motor complications (<3 years) whose social and occupational functioning remained preserved. This is called 'early' here. The study was a randomized, multicenter, bi-national pivotal trial with a 2 year observation period. Quality of life was the main outcome measure, and a video-based motor score was a blinded secondary outcome of the study. Motor, neuropsychological, psychiatric and psychosocial aspects were captured by established scales and questionnaires. The patient group randomized here is the earliest in the disease course and the youngest recruited in controlled DBS trials so far. The methodological innovation for DBS-studies of this study lies in novel procedures developed and used for monitoring best medical treatment, neurosurgical consistency, best management of stimulation programming, blinded video assessment of motor disability, and prevention of suicidal behaviors.
Resumo:
Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.