946 resultados para TRANSPORTER A1
Resumo:
Antibodies have been generated against two carboxyl-terminal splice variants of the glutamate transporter GLT1, namely, the originally described version of GLT1 and GLT1-B, and labelling has been examined in multiple species, including chickens and humans. Although strong specific labelling was observed in each species, divergent patterns of expression were noted. Moreover, each antibody was sensitive to the phosphorylation state of the appropriate protein, because chemical removal of phosphates using alkaline phosphatase revealed a broader range of labelled elements in most cases. In general, GLT1-B was present in cone photoreceptors and in rod and cone bipolar cells in the retinas of rabbits, rats, and cats. In the cone-dominated retinas of chickens and in marmosets, GLT1-B was associated only with cone photoreceptors, whereas, in macaque and human retinas, GLT1-B was associated with bipolar cells and terminals of photoreceptors. In some species, such as cats, GLT-B was also present in horizontal cells. By contrast, GLT1 distribution varied. GLT1 was associated with amacrine cells in chickens, rats, cats, and rabbits and with bipolar cells in marmosets and macaques. In the rat retina, rod photoreceptor terminals also contained GLT1, but this was evident only in enzymatically dephosphorylated tissues. We conclude that the two variants of GLT1 are present in all species examined but are differentially distributed in a species-specific manner. Moreover, each cell type generally expresses only one splice variant of GLT1. J. Comp. Neurol. 445:1-12, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
We have performed immunocytochemistry on rat brains using a highly specific antiserum directed against the originally described form of the glutamate transporter GLT-1 (referred to hereafter as GLT-1alpha), and another against a C-terminal splice variant of this protein, GLT-1B. Both forms of GLT-1 were abundant in rat brain, especially in regions such as the hippocampus and cerebral cortex, and macroscopic examination of sections suggested that both forms were generally regionally coexistent. However, disparities were evident; GLT-1alpha was present in the intermediate lobe of the pituitary gland, whereas GLT-1B was absent. Similar marked disparities were also noted in the external capsule, where GLT1A labeling was abundant but GLT-1B was only occasionally encountered. Conversely, GLT-1B was more extensively distributed, relative to GLT-1alpha, in areas such as the deep cerebellar nuclei. In most regions, such as the olfactory bulbs, both splice variants were present but differences were evident in their distribution. In cerebral cortex, patches were evident where GLT-1B was absent, whereas no such patches were evident for GLT-1alpha. At high resolution, other discrepancies were evident; double-labeling of areas such as hippocampus indicated that the. two splice variants may either be differentially expressed by closely apposed glial elements or that the two splice variants may be differentially targeted to distinct membrane domains of individual glial cells. (C) 2002 Wiley-Liss, Inc.
Resumo:
The distributions of a carboxyl terminal splice variant of the glutamate transporter GLT-1, referred to as GLT-1B, and the carboxyl terminus of the originally described variant of GLT-1, referred to hereafter as GLT-1alpha, were examined using specific antisera. GLT-1B was present in the retina at very early developmental stages. Labelling was demonstrable at embryonic day 14, and strong labelling was evident by embryonic day 18. Such labelling was initially restricted to populations of cone photoreceptors, the processes of which extended through the entire thickness of the retina and appeared to make contact with the retinal ganglion cells. During postnatal development the GLT-1B-positive photoreceptor processes retracted to form the outer plexiform layer, and around postnatal day 7, GLT-1B-immunoreactive bipolar cells appeared. The pattern of labelling of bipolar cell processes within the inner plexiform layer changed during postnatal development. Two strata of strongly immunoreactive terminals were initially evident in the inner plexiform layer, but by adulthood these two bands were no longer evident and labelling was restricted to the somata and processes (but not synaptic terminals) of the bipolar cells, as well as the somata, processes, and terminals of cone photoreceptors. By contrast, GLT-1alpha appeared late in postnatal development and was restricted mainly to a population of amacrine cells, although transient labelling was also associated with punctate elements in the outer plexiform layer, which may represent photoreceptor terminals, (C) 2002 Wiley-Liss, Inc.
Resumo:
The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.
Resumo:
The interactions of chi-conopeptide MrIA with the human norepinephrine transporter (hNET) were investigated by determining the effects of hNET point mutations on the inhibitory potency of MrIA. The mutants were produced by site-directed mutagenesis and expressed in COS-7 cells. The potency of MrIA was greater for inhibition of uptake by hNET of [H-3] norepinephrine (K-i 1.89 muM) than [H-3] dopamine (K-i 4.33 muM), and the human dopamine transporter and serotonin transporter were not inhibited by MrIA ( to 7 muM). Of 18 mutations where hNET amino acid residues were exchanged with those of the human dopamine transporter, MrIA had increased potency for inhibition of [H-3] norepinephrine uptake for three mutations ( in predicted extracellular loops 3 and 4 and transmembrane domain (TMD) 8) and decreased potency for one mutation (in TMD6 and intracellular loop (IL) 3). Of the 12 additional mutations in TMDs 2, 4, 5, and 11 and IL1, three mutations (in TMD2 and IL1) had reduced MrIA inhibitory potency. All of the other mutations tested had no influence on MrIA potency. A comparison of the results with previous data for desipramine and cocaine inhibition of norepinephrine uptake by the mutant hNETs reveals that MrIA binding to hNET occurs at a site that is distinct from but overlaps with the binding sites for tricyclic antidepressants and cocaine.
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
On solid substrates, yeast colonies pass through distinct developmental phases characterized by the changes in pH of their surroundings from acidic to nearly alkaline and vice versa. At the beginning of the alkali phase colonies start to produce ammonia, which functions as a quorum-sensing molecule inducing the reprogramming of cell metabolism. Such reprogramming includes, among others, the activation of several plasma membrane transporters and is connected with colony differentiation. In the present study, we show that colony cells can use two transport mechanisms to import lactic acid: a ‘saturable’ component of the transport, which requires the presence of a functional Jen1p transporter, and a ‘non-saturable’ component (diffusion) that is independent of Jen1p. During colony development, the efficiency of both transport components changes similarly in central and outer colonial cells. Although the lactate uptake capacity of central cells gradually decreases during colony development, the lactate uptake capacity of outer cells peaks during the alkali phase and is also kept relatively high in the second acidic phase. This lactate uptake profile correlates with the localization of the Jen1p transporter to the plasma membrane of colony cells. Both lactic acid uptake mechanisms are diminished in sok2 colonies where JEN1 expression is decreased. The Sok2p transcription factor may therefore be involved in the regulation of non-saturable lactic acid uptake in yeast colonies.
Resumo:
Dissertation to obtain the Master Degree in Biotechnology
Resumo:
ABSTRACTINTRODUCTION:The aim of this study was quantify annexin A1 expression in macrophages and cluster of differentiation 4 (CD4) + and cluster of differentiation 8 (CD8)+ T cells from the skin of patients with cutaneous leishmaniasis (n=55) and correlate with histopathological aspects.METHODS:Infecting species were identified by polymerase chain reaction-restriction fragment length polymorphism, and expression of annexin A1 was analyzed by immunofluorescence.RESULTS:All patients (n = 55) were infected with Leishmania braziliensis . Annexin A1 was expressed more abundantly in CD163 + macrophages in infected skin (p < 0.0001) than in uninfected skin. In addition, macrophages in necrotic exudative reaction lesions expressed annexin A1 at higher levels than those observed in granulomatous (p < 0.01) and cellular lesions p < 0.05). This difference might be due to the need to clear both parasites and necrotic tissue from necrotic lesions. CD4 + cells in cellular lesions expressed annexin A1 more abundantly than did those in necrotic (p < 0.05) and granulomatous lesions (p < 0.01). Expression in CD8 + T cells followed the same trend. These differences might be due to the pervasiveness of lymphohistiocytic and plasmacytic infiltrate in cellular lesions.CONCLUSIONS:Annexin A1 is differentially expressed in CD163 + macrophages and T cells depending on the histopathological features of Leishmania -infected skin, which might affect cell activation.
Resumo:
OBJETIVO: Os efeitos dos beta-bloqueadores na insuficiência cardíaca (IC) refratária não têm sido adequadamente estudados. Investigamos os efeitos do carvedilol (bloqueador b1,b2,a1) nos sintomas e na função ventricular de portadores de IC refratária. MÉTODOS: Foram estudados 21 pacientes, idade média de 56±10 anos, 9 em classe funcional (CF) IV, e 12 em CF III intermitente com IV. A dose inicial de carvedilol foi de 6,25mg e, se tolerada, aumentada progressivamente. A dose média final foi 42±11mg. Os pacientes foram submetidos a avaliações clínicas e eletrocardiográficas seriadas. Realizaram-se, antes e com 196±60 dias de evolução, ecocardiograma e ventriculografia radioisotópica. RESULTADOS: O medicamento foi tolerado em 16 (76%) pacientes. Um paciente está em fase de titulação em CF II. Com 196±60 dias de evolução observaram-se 8 pacientes em CF I e 7 em II; redução da freqüência cardíaca de 96±15 para 67±10bpm (p<0,0001); redução do diâmetro diastólico final de ventrículo esquerdo (VE) de 73±13 para 66±12mm (ecocardiograma) (p<0,009); e aumento da fração de ejeção de VE de 0,21±0,06 para 0,34±0,12 (p<0,0003). CONCLUSÃO: O carvedilol devido aos seus efeitos benéficos na função ventricular, remodelamento e CF é, se tolerado, uma potencial alternativa terapêutica no tratamento medicamentoso da IC refratária. Entretanto, estudos adicionais são necessários para definição do efeito a longo prazo neste específico subgrupo de pacientes.
Resumo:
Background: T reatment o f chronic hepatitis C i s evolving, a nd direct acting antivirals ( DAAs) are now a dded to p egylated interferon-α ( Peg- INF-α) and ribavirin (RBV) for the treatment o f hepatitis C v irus ( HCV) genotype 1 infection. DAAs c ause d ifferent side effects and can even worsen RBV induced hemolytic anemia. T herefore, identifying host genetic d eterminants of R BV bioavailability and therapeutic e fficacy will remain crucial for individualized treatment. Recent d ata showed associations between R BV induced h emolytic anemia and genetic polymorphisms o f concentrative nucleoside transporters s uch as C NT3 (SLC28A3) and i nosine t riphosphatase (ITPA). T o analyze t he association of genetic variants of SLC28 transporters and ITPA with RBV induced hemolytic anemia and treatment o utcome. Methods: I n our study, 173 patients f rom t he S wiss Hepatitis C C ohort Study and 2 2 patients from Swiss Association for the Study of the Liver study 24 (61% HCV g enotype 1, 3 9% genotypes 2 o r 3) were analyzed for SLC28A2 single nucleotide p olymorphism (SNP) rs11854484, SLC28A3 rs56350726 and SLC28A3 rs10868138 as well as ITPA SNPs rs1127354 and rs7270101. RBV serum levels during treatment were measured in 49 patients. Results: SLC28A2 r s11854484 genotype TT was associated with significantly higher dosage- and body weight-adjusted RBV levels as compared to genotypes TC and CC (p=0.04 and p=0.02 at weeks 4 and 8, respectively). ITPA SNPs rs1127354 and rs7270101 were associated with h emolytic a nemia both in genotype as w ell as i n allelic a nalyses. SLC28A3 rs56350726 genotype TT (vs. AT/AA, RR=2.1; 95% CI 1.1-4.1) as well as the T allele (vs. A; RR=1.8, 95% CI 1.1-3.2) were associated with increased SVR rates. The combined analysis of overall ITPA activity and SLC28 v ariants together revealed n o significant a dditive effects on either treatment-related anemia or SVR. Conclusions: T he newly identified association between RBV serum levels a nd SLC28A2 rs11854484 genotype as well as the replicated association of ITPA and SLC28A3 g enetic p olymorphisms w ith RBV induced hemolytic anemia and treatment r esponse underpin the need for further studies on host genetic d eterminants of R BV bioavailability and therapeutic e fficacy f or individualized treatment of chronic hepatitis C.
Resumo:
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Resumo:
Brain-derived neurotrophic factor (BDNF) promotes synaptic plasticity via an enhancement in expression of specific synaptic proteins. Recent results suggest that the neuronal monocarboxylate transporter MCT2 is a postsynaptic protein critically involved in synaptic plasticity and long-term memory. To investigate in vivo whether BDNF can modulate the expression of MCT2 as well as other proteins involved in synaptic plasticity, acute injection of BDNF was performed in mouse dorsal hippocampal CA1 area. Using immunohistochemistry, it was found that MCT2 expression was enhanced in part of the CA1 area and in the dentate gyrus 6 h after a single intrahippocampal injection of BDNF. Similarly, expression of the immediate early genes Arc and Zif268 was enhanced in the same hippocampal areas, in accordance with their role in synaptic plasticity. Immunoblot analysis confirmed the significant enhancement in MCT2 protein expression. In contrast, no changes were observed for the glial monocarboxylate transporters MCT1 and MCT4. When other synaptic proteins were investigated, it was found that postsynaptic density 95 (PSD95) and glutamate receptor 2 (GluR2) protein levels were significantly enhanced while no effect could be detected for synaptophysin, synaptosomal-associated protein 25 (SNAP25), αCaMKII and GluR1. These results demonstrate that MCT2 expression can be upregulated together with other key postsynaptic proteins in vivo under conditions related to synaptic plasticity, further suggesting the importance of energetics for memory formation.
Resumo:
Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.