944 resultados para TRANSCRIPTION REGULATOR
Resumo:
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.
Resumo:
Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.
Resumo:
In keratinocytes, the cyclin/CDK inhibitor p21(WAF1/Cip1) is a direct transcriptional target of Notch1 activation; loss of either the p21 or Notch1 genes expands stem cell populations and facilitates tumor development. The Notch1 tumor-suppressor function was associated with down-regulation of Wnt signaling. Here, we show that suppression of Wnt signaling by Notch1 activation is mediated, at least in part, by down-modulation of Wnts gene expression. p21 is a negative regulator of Wnts transcription downstream of Notch1 activation, independently of effects on the cell cycle. More specifically, expression of the Wnt4 gene is under negative control of endogenous p21 both in vitro and in vivo. p21 associates with the E2F-1 transcription factor at the Wnt4 promoter and causes curtailed recruitment of c-Myc and p300, and histone hypoacetylation at this promoter. Thus, p21 acts as a selective negative regulator of transcription and links the Notch and Wnt signaling pathways in keratinocyte growth control.
Resumo:
The TRAF-interacting protein (TRIP/TRAIP) is a RING-type E3 ubiquitin ligase inhibiting tumor necrosis factor-α (TNF-α)-mediated NF-κB activation. TRIP ablation results in early embryonic lethality in mice. To investigate TRIP function in epidermis, we examined its expression and the effect of TRIP knockdown (KD) in keratinocytes. TRIP mRNA expression was strongly downregulated in primary human keratinocytes undergoing differentiation triggered by high cell density or high calcium. Short-term phorbol-12-myristate-13-acetate (TPA) treatment or inhibition of phosphatidylinositol-3 kinase signaling in proliferative keratinocytes suppressed TRIP transcription. Inhibition by TPA was protein kinase C dependent. Keratinocytes undergoing KD of TRIP expression by lentiviral short-hairpin RNA (shRNA; T4 and T5) had strongly reduced proliferation rates compared with control shRNA. Cell cycle analysis demonstrated that TRIP-KD caused growth arrest in the G1/S phase. Keratinocytes with TRIP-KD resembled differentiated cells consistent with the augmented expression of differentiation markers keratin 1 and filaggrin. Luciferase-based reporter assays showed no increase in NF-κB activity in TRIP-KD keratinocytes, indicating that NF-κB activity in keratinocytes is not regulated by TRIP. TRIP expression was increased by ∼2-fold in basal cell carcinomas compared with normal skin. These results underline the important role of TRIP in the regulation of cell cycle progression and the tight linkage of its expression to keratinocyte proliferation.
Resumo:
Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.
Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.
Resumo:
In Pseudomonas aeruginosa, the CbrA/CbrB two-component system is instrumental in the maintenance of the carbon-nitrogen balance and for growth on carbon sources that are energetically less favorable than the preferred dicarboxylate substrates. The CbrA/CbrB system drives the expression of the small RNA CrcZ, which antagonizes the repressing effects of the catabolite repression control protein Crc, an RNA-binding protein. Dicarboxylates appear to cause carbon catabolite repression by inhibiting the activity of the CbrA/CbrB system, resulting in reduced crcZ expression. Here we have identified a conserved palindromic nucleotide sequence that is present in upstream activating sequences (UASs) of promoters under positive control by CbrB and σ(54) RNA polymerase, especially in the UAS of the crcZ promoter. Evidence for recognition of this palindromic sequence by CbrB was obtained in vivo from mutational analysis of the crcZ promoter and in vitro from electrophoretic mobility shift assays using crcZ promoter fragments and purified CbrB protein truncated at the N terminus. Integration host factor (IHF) was required for crcZ expression. CbrB also activated the lipA (lipase) promoter, albeit less effectively, apparently by interacting with a similar but less conserved palindromic sequence in the UAS of lipA. As expected, succinate caused CbrB-dependent catabolite repression of the lipA promoter. Based on these results and previously published data, a consensus CbrB recognition sequence is proposed. This sequence has similarity to the consensus NtrC recognition sequence, which is relevant for nitrogen control.
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions.
Resumo:
Because the transcription factor neuronal Per-Arnt-Sim-type signal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor and an effector of intracellular energy balance, and because sleep is thought to correct an energy imbalance incurred during waking, we examined NPAS2's role in sleep homeostasis using npas2 knockout (npas2-/-) mice. We found that, under conditions of increased sleep need, i.e., at the end of the active period or after sleep deprivation (SD), NPAS2 allows for sleep to occur at times when mice are normally awake. Lack of npas2 affected electroencephalogram activity of thalamocortical origin; during non-rapid eye movement sleep (NREMS), activity in the spindle range (10-15 Hz) was reduced, and within the delta range (1-4 Hz), activity shifted toward faster frequencies. In addition, the increase in the cortical expression of the NPAS2 target gene period2 (per2) after SD was attenuated in npas2-/- mice. This implies that NPAS2 importantly contributes to the previously documented wake-dependent increase in cortical per2 expression. The data also revealed numerous sex differences in sleep; in females, sleep need accumulated at a slower rate, and REMS loss was not recovered after SD. In contrast, the rebound in NREMS time after SD was compromised only in npas2-/- males. We conclude that NPAS2 plays a role in sleep homeostasis, most likely at the level of the thalamus and cortex, where NPAS2 is abundantly expressed.
Resumo:
Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.
Resumo:
Under iron limitation, the opportunistic human pathogen Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted into the extracellular environment, pyochelin complexes ferric ions and delivers them, via the outer membrane receptor FptA, to the bacterial cytoplasm. Extracellular pyochelin also acts as a signalling molecule, inducing the expression of pyochelin biosynthesis and uptake genes by a mechanism involving the AraC-type regulator PchR. We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin and iron. PchR-box mutations that interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. We conclude that pyochelin, probably in its iron-loaded state, is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation suggests that the siderophore can enter the cytoplasm.
Resumo:
Pseudomonas aeruginosa, when deprived of oxygen, generates ATP from arginine catabolism by enzymes of the arginine deiminase pathway, encoded by the arcDABC operon. Under conditions of low oxygen tension, the transcriptional activator ANR binds to a site centered 41.5 bp upstream of the arcD transcriptional start. ANR-mediated anaerobic induction was enhanced two- to threefold by extracellular arginine. This arginine effect depended, in trans, on the transcriptional regulator ArgR and, in cis, on an ArgR binding site centered at -73.5 bp in the arcD promoter. Binding of purified ArgR protein to this site was demonstrated by electrophoretic mobility shift assays and DNase I footprinting. This ArgR recognition site contained a sequence, 5'-TGACGC-3', which deviated in only 1 base from the common sequence motif 5'-TGTCGC-3' found in other ArgR binding sites of P. aeruginosa. Furthermore, an alignment of all known ArgR binding sites confirmed that they consist of two directly repeated half-sites. In the absence of ANR, arginine did not induce the arc operon, suggesting that ArgR alone does not activate the arcD promoter. According to a model proposed, ArgR makes physical contact with ANR and thereby facilitates initiation of arc transcription.
Resumo:
Cells are subjected to dramatic changes of gene expression upon environmental changes. Stresscauses a general down-regulation of gene expression together with the induction of a set of stress-responsivegenes. The p38-related stress-activated protein kinase Hog1 is an important regulator of transcription uponosmostress in yeast. Genome-wide localization studies of RNA polymerase II (RNA Pol II) and Hog1 showed that stress induced major changes in RNA Pol II localization, with a shift toward stress-responsive genes relative to housekeeping genes. RNA Pol II relocalization required Hog1, which was also localized to stress-responsive loci. In addition to RNA Pol II-bound genes, Hog1 also localized to RNA polymerase III-bound genes, pointing to a wider role for Hog1 in transcriptional control than initially expected. Interestingly, an increasing association of Hog1 with stressresponsive genes was strongly correlated with chromatin remodeling and increased gene expression. Remarkably, MNase-Seq analysis showed that although chromatin structure was not significantly altered at a genome-wide level in response to stress, there was pronounced chromatin remodeling for those genes that displayed Hog1 association. Hog1 serves to bypass the general down-regulation of gene expression that occurs in response to osmostress, and does so both by targeting RNA Pol II machinery and by inducing chromatin remodeling at stressresponsive loci.
Resumo:
Pluripotency in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is regulated by three transcription factors-OCT3/4, SOX2, and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behavior of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11) and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.
Resumo:
Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including c-Jun, Notch, Sox-2 and Pax-3, all usually expressed in the immature Schwann cells and suppressed at the onset of myelination. In order to identify new negative regulators of myelination involved in the development of the peripheral nervous system (PNS) we analyzed the data from a previously performed transcriptional analysis of myelinating Schwann cells. Based on its transcriptional expression profile during myelination, Sox4, a member of the Sox gene family, was identified as a potential candidate. Previous studies demonstrated that prolonged Sox4 expression in oligodendrocytes maintains these cells in a premyelinating state, further suggesting its role as a negative regulator of myelination. Concomitantly, we observed upregulation of Sox4 mRNA and protein expression levels in the PNS of three different models of demyelinating neuropathies (Pmp22, Lpin1, and Scap KOs). To better characterize the molecular function of Sox4, we used a viral vector allowing Sox4 overexpression in cultured Schwann cells and in neuron-Schwann cell co-cultures. In parallel, we generated two transgenic lines of mice in which the overexpression of Sox4 is driven specifically in Schwann cells by the Myelin Protein Zero gene promoter. The preliminary data from these in vitro and in vivo experiments show that overexpression of Sox4 in PNS causes a delay in progression of myelination thus indicating that Sox4 acts as a negative regulator of Schwann cell myelination.
Resumo:
Matrix attachment regions (MAR) generally act as epigenetic regulatory sequences that increase gene expression, and they were proposed to partition chromosomes into loop-forming domains. However, their molecular mode of action remains poorly understood. Here, we assessed the possible contribution of the AT-rich core and adjacent transcription factor binding motifs to the transcription augmenting and anti-silencing effects of human MAR 1-68. Either flanking sequences together with the AT-rich core were required to obtain the full MAR effects. Shortened MAR derivatives retaining full MAR activity were constructed from combinations of the AT-rich sequence and multimerized transcription factor binding motifs, implying that both transcription factors and the AT-rich microsatellite sequence are required to mediate the MAR effect. Genomic analysis indicated that MAR AT-rich cores may be depleted of histones and enriched in RNA polymerase II, providing a molecular interpretation of their chromatin domain insulator and transcriptional augmentation activities.
Resumo:
BACKGROUND: Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the alpha-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. CONCLUSIONS/SIGNIFICANCE: These data suggest that Maf1 is a major regulator of pol III transcription in human cells.