51 resultados para TLR3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, beta-glucan (MacroGard®) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast beta-1,3/1,6-glucan in form of MacroGard® at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, trypsin activity and size measurements. Along with the feeding of beta-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard® fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by beta-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-alpha and il-1beta was observed. We conclude that the administration of beta-glucan induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Atherosclerosis is potentiated by stimulation of Toll-like receptors (TLRs), which serve to detect pathogen associated molecular patterns (PAMPs). However little is known of which PAMPs may be present in atheroma, or capable of stimulating inflammatory signalling in vascular cells. Materials and Methods DNA extracted from human carotid atheroma samples was amplified and sequenced using broad-range 16S gene specific primers to establish historical exposure to bacterial PAMPs. Responsiveness of primary human arterial and venous endothelial and smooth muscle cells to PAMPs specific for each of the TLRs was assessed by measurement of interleukin-8 secretion and E-selectin expression. Results Extracts of atheromatous tissue stimulated little or no signalling in TLR-transfected HEK-293 cells. However, sequencing of bacterial DNA amplified from carotid atheroma revealed the presence of DNA from 17 different bacterial genera, suggesting historical exposure to bacterial lipopeptide, lipopolysaccharide and flagellin. All cells examined were responsive to the ligands of TLR3 and TLR4, poly inosine:cytosine and lipopolysaccharide. Arterial cells were responsive to a wider range of PAMPs than venous cells, being additionally responsive to bacterial flagellin and unmethylated cytosine-phosphate-guanosine DNA motifs, the ligands of TLR5 and TLR9, respectively. Cells were generally unresponsive towards the ligands of human TLR7 and TLR8, loxoribine and single stranded RNA. Only coronary artery endothelial cells expressed TLR2 mRNA and responded to the TLR2 ligand Pam3CSK4. Conclusions Vascular cells are responsive to a relatively diverse range of TLR ligands and may be exposed, at least transiently, to ligands of TLR2, TLR4, TLR5 and TLR9 during the development of carotid atheroma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Human rhinoviral infections are major contributors to the healthcare burden associated with acute exacerbations of asthma. We, and others have recently demonstrated that rhinovirus (RV)-induced inflammatory responses are mediated by multiple signalling mechanisms, such as IL-1/MyD88 (1) and TLR3/RIGI (2). We have also previously published work showing that TLR signalling is effectively inhibited by phosphatidylserine-containing liposomes (SAPS), through the disruption of membrane microdomains (3). Evidence has also suggested that membrane microdomains may influence infections with RV. In this study, we explored the ability of SAPS to modulate responses to the natural viral pathogens, RV-1B and RV-16. Method: The immortalized bronchial epithelial cell line, BEAS-2B or primary bronchial epithelial cells were infected with RV-1B or RV-16 at a TCID50/ml of 19107 for 1 h. Immediately following infection, various concentrations of SAPS were added and changes in cytokine release were measured at 24 h. SAPS remained present throughout. Type I and III interferon (IFN) expression and rates of viral replication were measured by quantitative PCR. Virus quantification was also performed using a viral CPE assay, and IFN signalling was measured by western blot. Liposome stability was characterised and intracellular trafficking of fluorescently labelled SAPS in BEAS-2B cells was investigated using confocal microscopy. For in vivo studies, female wt Balb/c mice were pre-treated with SAPS for 2 h prior to infection with RV as previously described and changes in BAL cell number, BAL cytokine production and viral replication were quantified (4). Results: Characterisation of SAPS liposomes by mass spectrometry showed no obvious signs of oxidation over the time period tested, and liposome size remained constant. Preliminary confocal studies revealed that SAPS was rapidly internalised within the cell and was found to associate with intracellular compartments such as the early endosome and golgi. Viral infected BEAS-2B cells co-incubated with SAPS, showed notably impaired responses to RV as assessed by release of CXCL8 and CCL5. SAPS also reduced RV-induced IFNb production and STAT-1 phosphorylation, without significantly influencing viral replication rates. Modest increases in viral particle production were only observed at 48 and 72 h time points. Suppression of viral-induced cytokine production was also observed in primary bronchial epithelial cells and pilot in vivo studies showed that SAPS results in reduced KC production at 24 h post viral infection, and this was associated with reduced neutrophil numbers within the BAL fluid. Conclusion: Our data demonstrates a potential means of modulating inflammatory responses induced by human rhinovirus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.