964 resultados para TISSUE-EQUIVALENT MATERIALS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The need to source live human tissues for research and clinical applications has been a major driving force for the development of new biomaterials. Ideally, these should elicit the formation of scaffold-free tissues with native-like structure and composition. In this study, we describe a biologically interactive coating that combines the fabrication and subsequent self-release of live purposeful tissues using template–cell–environment feedback. This smart coating was formed from a self-assembling peptide amphiphile comprising a proteasecleavable sequence contiguous with a cell attachment and signaling motif. This multifunctional material was subsequently used not only to instruct human corneal or skin fibroblasts to adhere and deposit discreet multiple layers of native extracellular matrix but also to govern their own self-directed release from the template solely through the action of endogenous metalloproteases. Tissues recovered through this physiologically relevant process were carrier-free and structurally and phenotypically equivalent to their natural counterparts. This technology contributes to a new paradigm in regenerative medicine, whereby materials are able to actively direct and respond to cell behavior. The novel application of such materials as a coating capable of directing the formation and detachment of complex tissues solely under physiological conditions can have broad use for fundamental research and in future cell and tissue therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: the purpose of this study was to histomorphometrically evaluate the response of periodontal tissues covering Class V resin restorations in dogs.Methods: After raising a mucoperiosteal flap, bony defects measuring 5 x 5 mm were created on the buccal aspect of the canines of five dogs followed by cavity preparations on the root surface measuring 3 x 3 x 1 mm. Before repositioning the flap to cover the bone defect, the cavities were restored with composite resin (CR) or resin-modified glass ionomer cement (RMGIC) or were left unrestored as control (C). The dogs were euthanized 90 days after surgery. Specimens comprising the tooth and periodontal tissues were removed, processed routinely, cut into longitudinal serial sections in the bucco-lingual direction, and stained with hematoxylin and eosin (H&E) or Masson's trichrome. The most central sections were selected for histomorphometric analysis.Results: Histomorphometric analysis revealed apical migration of epithelial tissue onto the restorative materials (RMGIC and CR). The C group presented significantly longer connective tissue attachment (P < 0.05) than the RMGIC and CR groups and significantly higher bone regeneration (P < 0.05) compared to the RMGIC group. Histologically, the cervical third (CT) of all groups had the most marked chronic inflammatory infiltrate.Conclusions: Within the limits of this study, it can be concluded that the restorative materials used exhibit biocompatibility; however, both materials interfered with the development of new bone and the connective tissue attachment process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated periapical tissue healing and orthodontic root resorption of endodontically treated teeth sealed with calcium hydroxide in dogs. The sample consisted of three contralateral pairs of maxillary incisors and two contralateral pairs of mandibular incisors in each of two dogs using a split mouth design. After biomechanical preparation of the teeth in the first group (n = 10), a Ca(OH)(2) dressing was placed for 14 days before root canal filling with Ca(OH)(2)-based sealer (Sealapex) and gutta-percha points. In the second group (n = 10), root canals were obturated immediately after the mechanical preparation with gutta-percha points and zinc oxide and eugenol (ZOE)-based sealer (Endofill). After completion of endodontic treatment, the teeth were moved with an orthodontic appliance with a calibrated force of 200 g, reactivated every 21 days. After 105 days, the animals were killed and the teeth were removed upon completion of active treatment, without a period of recovery, and prepared for histomorphological analysis. All sections of each tooth were graded subjectively on a scale from one to four to obtain the average of the 16 histomorphological parameters analysed. Evaluation of the differences between the two treatment protocols was made with Mann-Whitney U-test. It was observed that the teeth treated with Ca(OH)(2)-based materials provided better outcomes (P = 5%), with complete repair of all root resorption areas, high rate of biological closure of the main canal and apical accessory canals by newly formed cementum, less intense and extensive chronic inflammatory infiltrate, and better organization of the periodontal ligament. Under the tested conditions, Ca(OH)(2)-based materials had a favourable action on periapical tissue healing and repair of orthodontic root resorption in endodontically treated dogs' teeth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The gingival reaction to 4 different suture materials used in periodontal surgery was studied in 36 patients. The gingiva was sutured prior to surgery and biopsies were taken at 3, 7 and 14 days to observe the tissue reaction. The histological examination showed that silk caused the most intense and longest inflammatory response. Polyester and perlon provoked shorter, less intense tissue reactions than silk, and nylon caused the least inflammatory response, with earlier tissue repair.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aimof this study was to evaluate the stress distribution on bone tissue with a single prosthesis supported by implants of large and conventional diameter and presenting different veneering materials using the 3-D finite elementmethod. Sixteenmodels were fabricated to reproduce a bone block with implants, using two diameters (3.75 × 10 mmand 5.00 × 10 mm), four different veneering materials (composite resin, acrylic resin, porcelain, and NiCr crown), and two loads (axial (200 N) and oblique (100 N)). For data analysis, the maximum principal stress and vonMises criterion were used. For the axial load, the cortical bone in allmodels did not exhibit significant differences, and the trabecular bone presented higher tensile stresswith reduced implant diameter. For the oblique load, the cortical bone presented a significant increase in tensile stress on the same side as the loading for smaller implant diameters. The trabecular bone showed a similar but more discreet trend. There was no difference in bone tissue with different veneering materials. The veneering material did not influence the stress distribution in the supporting tissues of single implant-supported prostheses. The large-diameter implants improved the transference of occlusal loads to bone tissue and decreased stress mainly under oblique loads.Oblique loading was more detrimental to distribution stresses than axial loading. © 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab (R). The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior anterior or anterior posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Materials and Methods: Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Results: Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. Conclusions: The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:2041-2047, 2012