925 resultados para TISSUE FORMATION ADJACENT


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To investigate the potential of inflammation to induce new adipose tissue formation in the in vivo environment. Methods and results: Using an established model of in vivo adipogenesis, a silicone chamber containing a Matrigel and fibroblast growth factor 2 (1 μg/ml) matrix was implanted into each groin of an adult male C57Bl6 mouse and vascularized with the inferior epigastric vessels. Sterile inflammation was induced in one of the two chambers by suspending Zymosan-A (ZA) (200-0.02 μg/ml) in the matrix at implantation. Adipose tissue formation was assessed at 6, 8, 12 and 24 weeks. ZA induced significant adipogenesis in an inverse dose-dependent manner (P<0.001). At 6 weeks adipose tissue formation was greatest with the lowest concentrations of ZA and least with the highest. Adipogenesis occurred both locally in the chamber containing ZA and in the ZA-free chamber in the contralateral groin of the same animal. ZA induced a systemic inflammatory response characterized by elevated serum tumour necrosis factor-α levels at early time points. Aminoguanidine (40 μg/ml) inhibited the adipogenic response to ZA-induced inflammation. Adipose tissue formed in response to ZA remained stable for 24 weeks, even when exposed to the normal tissue environment. Conclusions: These results demonstrate that inflammation can drive neo-adipogenesis in vivo. This suggests the existence of a positive feedback mechanism in obesity, whereby the state of chronic, low-grade inflammation, characteristic of the condition, may promote further adipogenesis. The mobilization and recruitment of a circulating population of adipose precursor cells is likely to be implicated in this mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rheumatoid arthritis is the most common of all types of arthritis and despite of intensive research etiology of the disease remains unclear. Distinctive features of rheumatic arthritis comprise continuous inflammation of synovium, in which synovial membrane expands on cartilage leading to pannus tissue formation. Pannus formation, appearance of proteolytic enzymes and osteoclast formation cause articular cartilage and bone destruction, which lead to erosions and permanent joint damage. Proteolytic pathways play major roles in the development of tissue lesions in rheumatoid arthritis. Degradation of extracellular matrix proteins is essential to pannus formation and invasion. Matrix metalloproteinases (MMP) form a large proteolytic enzyme family and in rheumatoid arthritis they contribute to pannus invasion by degrading extracellular matrix and to joint destruction by directly degrading the cartilage. MMP-1 and MMP-3 are shown to be increased during cell invasion and also involved in cartilage destruction. Increase of many cytokines has been observed in rheumatoid arthritis, especially TNF-α and IL-1β are studied in synovial tissue and are involved in rheumatoid inflammation and degradation of cartilage. Underlying bone resorption requires first demineralization of bone matrix with acid secreted by osteoclasts, which exposes the collagen-rich matrix for degradation. Cathepsin K is the best known enzyme involved in bone matrix degradation, however deficiency of this protein in pycnodysostosis patient did not prevent bone erosion and on the contrary pannus tissue invading to bone did not expressed much cathepsin K. These indicate that other proteinases are involved in bone degradation, perhaps also via their capability to replace the role of other enzymes especially in diseases like pycnodysostosis or during medication e.g. using cathepsin K inhibitors. Multinuclear osteoclasts are formed also in pannus tissue, which enable the invasion into underlying bone matrix. Pannus tissue express a receptor activator of nuclear factor kappa B ligand (RANKL), an essential factor for osteoclast differentiation and a disintegrin and a metalloproteinase 8 (ADAM8), an osteoclast-activating factors, involved in formation of osteoclast-like giant cells by promoting fusion of mononuclear precursor cells. The understanding of pannus invasion and degradation of extracellular matrix in rheumatic arthritis will open us new more specific methods to prevent this destructive joint disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UC781 is a potent and poorly water-soluble nonnucleoside reverse transcriptase inhibitor being investi- gated as a potential microbicide for preventing sexual transmission of HIV-1. This study was designed to evaluate the in vivo release and pharmacokinetics of UC781 delivered from matrix-type intravaginal ring segments in rabbits. Three polymer matrices (polyurethane, ethylene vinyl acetate copolymer, and silicone elastomer) and two drug loadings (5 and 15 mg/segment) were evaluated in at least one of two independent studies for up to 28 days in vivo. Inter-study comparison of in vivo release, vaginal tissue, and plasma concentrations for similar formulations demonstrated good reproducibility of the animal model. Mean estimates for a 28-day in vivo release ranged from 0.35 to 3.17 mg UC781 per segment. Mean proximal vaginal tissue levels (adjacent to the IVR segment) were 8– 410 ng/g and did not change significantly with time for most formulations. Distal vaginal tissue levels of UC781 were 6- to 49-fold lower than proximal tissue levels. Mean UC781 plasma levels were low for all formulations, at 0.09–0.58 ng/mL. All formulations resulted in similar UC781 concentrations in vaginal tissue and plasma, except the low loading polyurethane group which provided significantly lower levels. Loading dependent release and pharmacokinetics were only clearly observed for the polyurethane matrix. Based on these results, intravaginal ring segments loaded with UC781 led to vaginal tissue concen- trations ranging from below to approximately two orders of magnitude higher than UC781’s EC50 under in vitro conditions (2.8 ng/mL), with little influence by polymer matrix or UC781 loading. Moreover, these findings support the use of rabbit vaginal pharmacokinetic studies in preclinical testing of microbicide intravaginal rings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of medical devices could be very much improved if robust tools were available for computational simulation of tissue response to the presence of the implant. Such tools require algorithms to simulate the response of tissues to mechanical and chemical stimuli. Available methodologies include those based on the principle of mechanical homeostasis, those which use continuum models to simulate biological constituents, and the cell-centred approach, which models cells as autonomous agents. In the latter approach, cell behaviour is governed by rules based on the state of the local environment around the cell; and informed by experiment. Tissue growth and differentiation requires simulating many of these cells together. In this paper, the methodology and applications of cell-centred techniques-with particular application to mechanobiology-are reviewed, and a cell-centred model of tissue formation in the lumen of an artery in response to the deployment of a stent is presented. The method is capable of capturing some of the most important aspects of restenosis, including nonlinear lesion growth with time. The approach taken in this paper provides a framework for simulating restenosis; the next step will be to couple it with more patient-specific geometries and quantitative parameter data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Keloids are the result of excessive scar tissue formation. Besides their poor aesthetic appearance, keloids can be associated with severe clinical symptoms such as pain, itching, and rigidity. Unfortunately, most therapeutic approaches remain clinically unsatisfactory. Recently, injections with botulinum toxin A (BTA) were proposed for the treatment of established keloids in a clinical trial. In this study, we aimed to verify the effects of intralesional BTA for the treatment of therapy-resistant keloids using objective measurements. In addition, the underlying molecular mechanisms were investigated using cultured keloid-derived fibroblasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of ~500 mg/day. The deposition parameters were optimised to obtain high pure CNTs ~99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’étude de la guérison des plaies à l’aide de substituts produits par génie tissulaire est un domaine en plein essor. Dans ces travaux, les effets de pansements biologiques produits en laboratoire à partir de cellules souches/stromales du tissu adipeux (CSTA) différenciées ou non en adipocytes ont été évalués sur des plaies cutanées in vivo. Un modèle de souris possédant un épiderme fluorescent a permis de démontrer que les plaies traitées avec les pansements biologiques guérissent plus rapidement que les plaies non traitées, et ce, de manière indépendante de la réépithélialisation. Une augmentation de la formation du tissu de granulation et une angiogenèse accrue ont également été observées dans les groupes traités. Ces résultats établissent que les substituts contenant des CSTA ou des adipocytes fonctionnels favorisent la réparation tissulaire. À terme, ces travaux pourraient mener au développement de nouvelles indications cliniques pour le traitement des ulcères cutanés.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peripheral nerve injury is a serious problem affecting significantly patients' life. Autografts are the "gold standard" used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La guérison des plaies cutanées appendiculaires chez le cheval, à la différence de celle des plaies corporelles, se complique régulièrement. Un retard de cicatrisation s’y observe et un tissu de granulation exubérant tend à s’y développer, le tout menant à une cicatrice pathologique hypertrophiée. La pathogénie exacte du tissu de granulation exubérant chez le cheval demeure inconnue à ce jour. Une hypoxie tissulaire pourrait favoriser son développement tout comme elle semble contribuer au développement de cicatrices cutanées pathologiques similaires observées chez l’Homme. L’objectif de cette étude était d’évaluer la perfusion vasculaire et la disponibilité locale en oxygène de plaies cutanées appendiculaires et corporelles en cours de cicatrisation normale et pathologique chez le cheval, à l’aide de la thermographie infrarouge et de la spectroscopie par réflectance dans le proche infrarouge. Six juments âgées de 3 à 4 ans ont été utilisées. Trois plaies cutanées ont été créées à l’aspect dorso-latéral du canon des membres thoraciques (plaies appendiculaires), et sur la paroi costale de l’un des hémithorax (plaies corporelles). Chez chaque jument, un canon a été aléatoirement bandé dans le but d’induire la formation de tissu de granulation exubérant dans les plaies s’y trouvant, tel que rapporté. La perfusion vasculaire et la disponibilité locale en oxygène ont été évaluées séquentiellement par thermographie infrarouge et spectroscopie par réflectance dans le proche infrarouge pour chaque plaie de chaque site (thorax; membre bandé; membre non bandé) au cours du processus de cicatrisation cutanée. Un modèle linéaire à doubles mesures répétées associé à une correction séquentielle de Bonferroni a révélé des différences significatives de perfusion vasculaire et de disponibilité locale en oxygène entre les plaies appendiculaires et corporelles. Ainsi la perfusion vasculaire et la disponibilité locale en oxygène étaient significativement plus élevées dans les plaies corporelles (P<0.05) et la perfusion vasculaire était significativement plus élevée dans les plaies appendiculaires non bandées que dans celles bandées (P<0.05). Nous avons récemment rapporté une plus grande occlusion de la micro-vascularisation au niveau des plaies appendiculaires chez le cheval. Nous rapportons maintenant que la perfusion vasculaire et la disponibilité locale en oxygène sont significativement inférieures dans les plaies appendiculaires, en particulier lorsqu’un tissu de granulation exubérant s’y développe. Compilés, ces résultats sous-tendent l’hypothèse que les plaies appendiculaires souffrent d’une altération de la perfusion vasculaire à l’origine possible d’une hypoxie tissulaire qui pourrait favoriser une cicatrisation cutanée anormale, telle la formation d’un tissu de granulation exubérant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No presente estudo, avaliou-se a eficácia do emprego do peritônio bovino, conservado em glicerina a 98%, no reparo de lesões induzidas no tendão calcâneo (TC) de cães, quando um fragmento de aproximadamente 1cm do TC foi excisado e o espaço resultante preenchido por um fragmento de peritônio. Foram utilizados 21 cães, pesando entre 10 e 15kg, divididos em 7 grupos de 3, sacrificados aos 02, 07, 15, 30, 60, 90 e 120 dias de pós-operatório. Analisaram-se os aspectos clínico-cirúrgicos referentes à recuperação funcional motora, bem como, a integração do peritônio com o tecido tendíneo mediante avaliação macroscópica, por microscopia óptica e por microscopia eletrônica de varredura. Clinicamente, verificou-se que, por volta do 55º dia de pós-operatório, os animais já apresentavam deambulação normal e que o neotendão apresentou resistência suficiente para suportar o estresse normalmente aplicado ao TC. Microscopicamente, o peritônio implantado esteve presente em todos os períodos de observação. Proliferação fibroblástica e neoformação vascular foram observadas de forma incipiente no segundo dia; entretanto, no sétimo dia de pós-operatório, esta condição foi exacerbada. Com a evolução, as fibras de peritônio tendiam a se dissociar, entrando em estreita associação com fibras conjuntivas, fibroblastos e colágeno. Aos 30, 60, 90 e 120 dias de pós-operatório, notava-se maior presença de colágeno que se tornava cada vez mais organizado. Concluiu-se que o peritônio estimulou uma rápida deposição de tecido conjuntivo com mínima reação inflamatória, sendo incorporado ao tecido cicatricial e servindo como alicerce para o desenvolvimento de um novo tecido, restabelecendo assim a estrutura do tendão.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the subcutaneous response of rat connective tissue to light-cure MTA and Angelus MTA. These materials were placed in polyethylene and dentin tubes and implanted into dorsal connective tissue of Wistar rats for 30 and 60 days. The specimens were prepared to be stained with hematoxylin-eosin, Von Kossa, and without stain for polarized light and evaluated in an optic microscope. The Angelus MTA showed a mild inflammatory response at 30 days and none at 60 days, characterized by organized connective tissue, presence of some chronic inflammatory cells, and induction of mineralized tissue formation. Light-cure MTA presented a moderate chronic inflammatory response at 30 days that decreased at 60 days but was more intense than with Angelus MTA and without dystrophic calcifications. It was possible to conclude that light-cure MTA was similar to MTA at 60 days, but it did not stimulate mineralization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P= 1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 513 congruent to 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, bad not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of ultrasound on the wound healing process after teeth extractions were studied histologically. The right upper incisor was extracted in 56 rats. They were divided into 2 groups, one control (I) and one experimental (II). Group II received ultrasound stimulation that was applied with the frequency of repetition of 1,000 Hz and pulse length of 2,000 us continuously, during five minutes daily since the extraction day until 24 hours before the death. The rats were sacrificed at 3, 6, 9, 12, 15, 18, and 21 postoperative days. The results showed a precocious granulation tissue formation, faster remodeling of osseous ridges, and consequently acceleration of the alveolar wound healing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study we report the experience of the Department of Otolaryngology-Head and Neck Surgery, University Hospital, Botucatu School in 19 cases of laryngotracheal stenosis. Fifteen cases had subglottic stenosis, one had stenosis of inferior tracheal and subglottic, one had stenosis of trachea and two others had extensive involvement of larynx and trachea due to chronic inflammatory disease. In eleven patients a laryngotracheal reconstrutive technique with costal cartilagem graft was performed with good results. The major technical difficulties, occurring mainly in children, were the withdrawal of the cannula of the tracheostomy due to granulation tissue formation and the subglottic partial stenosis after surgical reconstruction.