998 resultados para TIMP-1
Resumo:
Statins exert anti-inflammatory effects and downregulate matrix metalloproteinases (MMPs) expression, thus contributing to restore cardiovascular homeostasis in cardiovascular diseases. We aimed at comparing the effects of different statins (simvastatin, atorvastatin, and pravastatin) on MMP-2, MMP-9, tissue inhibitors of metalloproteinases (TIMP)-1, TIMP-2, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios released by human umbilical vein endothelial cells (HUVEC) stimulated by phorbol myristate acetate (PMA). HUVECs were incubated with statins (0.1-10 mu M) for 12 h before stimulation with PMA 100 nM. Monolayers were used to perform cell viability assays and the supernatants were collected to determine MMPs and TIMPs levels by gelatin zymography and/or enzyme immunoassay. While treatment with PMA increased MMP-9 and TIMP-1 levels (by 556% and 159%, respectively; both P < 0.05), it exerted no effects on MMP-2 and TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, attenuated PMA-induced increases in MMP-9 levels (P < 0.05). Only atorvastatin decreased baseline MMP-2 levels significantly (P < 0.05). We found no effects on TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, decreased MMP-9/TIMP-1 ratio significantly (both P < 0.05), whereas atorvastatin and pravastatin, but not simvastatin, decreased MMP-2/TIMP-2 ratio significantly (both P < 0.05). Our data support the notion that statins with different physicochemical features exert variable effects on MMP/TIMP ratios (which reflect net MMP activity). Our results suggest that more lipophilic statins (simvastatin and atorvastatin), but not the hydrophilic statin pravastatin, downregulate net MMP-9 activity. However, atorvastatin and pravastatin may downregulate net MMP-2 activity. The clinical implications of the present findings deserve further investigation.
Resumo:
Previous studies in our laboratory have shown that the pleiotropic cytokine leukemia inhibitory factor (LIF) inhibits neointimal formation and the development and progression of atherosclerotic and restenotic lesions in a rabbit model of disease. The present study demonstrates an upregulation of both the LIF receptor (LIFR)-α subunit and the signal transducing subunit gp130 following endothelial denudation of the carotid artery by balloon catheter. Continuous infusion of LIF (30 μg/kg/day) resulted in the downregulation of LIFR-a in injured arteries in vivo. Similarly, smooth muscle cells in vitro treated with LIF exhibited a time-dependent reduction in LIFR-a protein expression and the subsequent reduction in transcription of the TIMP-1 gene. However, in the presence of an intact endothelium, LIFR-a was upregulated in response to LIF, and accordingly the downstream induction of iNOS expression was also increased. Thus, LIF exerts more potent antiatherogenic effects in the vasculature when the endothelium is intact.
Resumo:
One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.
Resumo:
AbstractBackground:Despite the increased evidence of the important role of matrix metalloproteinases (MMP-9 and MMP‑2) in the pathophysiology of hypertension, the profile of these molecules in resistant hypertension (RHTN) remains unknown.Objectives:To compare the plasma levels of MMP-9 and MMP-2 and of their tissue inhibitors (TIMP-1 and TIMP-2, respectively), as well as their MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios, between patients with controlled RHTN (CRHTN, n=41) and uncontrolled RHTN (UCRHTN, n=35). In addition, the association of those parameters with clinical characteristics, office blood pressure (BP) and arterial stiffness (determined by pulse wave velocity) was evaluate in those subgroups.Methods:This study included 76 individuals diagnosed with RHTN and submitted to physical examination, electrocardiogram, and laboratory tests to assess biochemical parameters.Results:Similar values of MMP-9, MMP-2, TIMP-1, TIMP-2, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios were found in the UCRHTN and CRHTN subgroups (P>0.05). A significant correlation was found between diastolic BP (DBP) and MMP-9/TIMP-1 ratio (r=0.37; P=0.02) and DPB and MMP-2 (r=-0.40; P=0.02) in the UCRHTN subgroup. On the other hand, no correlation was observed in the CRHTN subgroup. Logistic regression models demonstrated that MMP-9, MMP-2, TIMP-1, TIMP-2 and their ratios were not associated with the lack of BP control.Conclusion:These findings suggest that neither MMP-2 nor MMP-9 affect BP control in RHTN subjects.
Resumo:
The aim of the present study was to identify specific markers that mirror liver fibrosis progression as an alternative to biopsy when biopsy is contraindicated, especially in children. After liver biopsies were performed, serum samples from 30 hepatitis C virus (HCV) paediatric patients (8-14 years) were analysed and compared with samples from 30 healthy subjects. All subjects were tested for the presence of serum anti-HCV antibodies. Direct biomarkers for liver fibrosis, including transforming growth factor-β1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), hyaluronic acid (HA), procollagen type III amino-terminal peptide (PIIINP) and osteopontin (OPN), were measured. The indirect biomarkers aspartate and alanine aminotransferases, albumin and bilirubin were also tested. The results revealed a significant increase in the serum marker levels in HCV-infected children compared with the healthy group, whereas albumin levels exhibited a significant decrease. Significantly higher levels of PIIINP, TIMP-1, OPN and HA were detected in HCV-infected children with moderate to severe fibrosis compared with children with mild fibrosis (p < 0.05). The diagnostic accuracy of these direct biomarkers, represented by sensitivity, specificity and positive predictive value, emphasises the utility of PIIINP, TIMP-1, OPN and HA as indicators of liver fibrosis among HCV-infected children.
Resumo:
BACKGROUND: Human saphenous vein grafts are one of the salvage bypass conduits when endovascular procedures are not feasible or fail. Understanding the remodeling process that venous grafts undergo during exposure to arterial conditions is crucial to improve their patency, which is often compromised by intimal hyperplasia. The precise role of hemodynamic forces such as shear stress and arterial pressure in this remodeling is not fully characterized. The aim of this study was to determine the involvement of arterial shear stress and pressure on vein wall remodeling and to unravel the underlying molecular mechanisms. METHODS: An ex vivo vein support system was modified for chronic (up to 1 week), pulsatile perfusion of human saphenous veins under controlled conditions that permitted the separate control of arterial shear stress and different arterial pressure (7 mm Hg or 70 mm Hg). RESULTS: Veins perfused for 7 days under high pressure (70 mm Hg) underwent significant development of a neointima compared with veins exposed to low pressure (7 mm Hg). These structural changes were associated with altered expression of several molecular markers. Exposure to an arterial shear stress under low pressure increased the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 at the transcript, protein, and activity levels. This increase was enhanced by high pressure, which also increased TIMP-2 protein expression despite decreased levels of the cognate transcript. In contrast, the expression of plasminogen activator inhibitor-1 increased with shear stress but was not modified by pressure. Levels of the venous marker Eph-B4 were decreased under arterial shear stress, and levels of the arterial marker Ephrin-B2 were downregulated under high-pressure conditions. CONCLUSIONS: This model is a valuable tool to identify the role of hemodynamic forces and to decipher the molecular mechanisms leading to failure of human saphenous vein grafts. Under ex vivo conditions, arterial perfusion is sufficient to activate the remodeling of human veins, a change that is associated with the loss of specific vein markers. Elevation of pressure generates intimal hyperplasia, even though veins do not acquire arterial markers. CLINICAL RELEVANCE: The pathological remodeling of the venous wall, which leads to stenosis and ultimately graft failure, is the main limiting factor of human saphenous vein graft bypass. This remodeling is due to the hemodynamic adaptation of the vein to the arterial environment and cannot be prevented by conventional therapy. To develop a more targeted therapy, a better understanding of the molecular mechanisms involved in intimal hyperplasia is essential, which requires the development of ex vivo models of chronic perfusion of human veins.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
The treatment of some mesenchymal malignancies has made significant gains over the past few decades with the development of effective systemic therapies. In contrast, the treatment of chondrosarcoma has been limited to surgical resection, with the most significant prognostic indicators being surgical margins and histologic grade. We have reported that MMP-1/TIMP-1 gene expression serves to prognosticate for tumor recurrence in this group of patients. This led to the hypothesis that collagenase activity facilitates cell egression from the cartilaginous matrix. In the current study we examine the specificity of collagenase gene expression in archival human chondrosarcoma samples using semi-quantitative PCR. Messenger RNA was affinity extracted and subject to reverse transcription. The subsequent cDNA was amplified using novel primers and quantitated by densitometry. Ratios of gene expression were constructed and compared to disease-free survival. The data demonstrate that the significance of the MMP-1/TIMP-1 ratio as a predictor of recurrence is confirmed with a larger number of patients. Neutrophil collagenase or MMP-8 was observed in only 5 of 29 samples. Collagenase-3 or MMP-13 was observed in all samples but the level did not correlate with disease-free survival. Since the collagenases have similar activity for fibrillar collagens and cleave the peptide in the same location, post-transcriptional regulatory mechanisms may account for the observed specificity. The determination of the MMP-1/TIMP-1 gene expression ratio not only serves to identify those patients at risk for recurrence but may also serve as a novel therapeutic avenue as an adjunct to surgical resection.
Resumo:
Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate extracellular matrix (ECM) turnover and so they have been suggested to be important in the process of lung disease associated with tissue remodeling. This has led to the concept that modulation of airway remodeling including excessive proteolysis damage to the tissue may be of interest for future treatment. Within the MMP family, macrophage elastase (MMP-12) is able to degrade ECM components such as elastin and is involved in tissue remodeling processes in chronic obstructive pulmonary disease including emphysema. Pulmonary fibrosis has an aggressive course and is usually fatal within an average of 3 to 6 years after the onset of symptoms. Pulmonary fibrosis is associated with deposition of ECM components in the lung interstitium. The excessive airway remodeling as a result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components could justify anti-protease treatments. Indeed, the correlation of the differences in hydroxyproline levels in the lungs of bleomycin-treated mice strongly suggests that a reduced molar pro-MMP-9/TIMP-1 ratio in bronchoalveolar lavage fluid is associated with collagen deposition, beginning as early as the inflammatory events at day 1 after bleomycin administration. Finally, these observations emphasize that effective treatment of these disorders must be started early during the natural history of the disease, prior to the development of extensive lung destruction and fibrosis.
Resumo:
Our objective was to determine the presence of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and MMP-9 and specific tissue inhibitors of matrix metalloproteinase (TIMP-1 and TIMP-2) in tumor samples obtained from patients with primary breast cancer. We attempted to correlate these findings with the status of the sentinel lymph node (SLN) and clinical-pathological characteristics such as age, tumor size, histological type, histological grade, and vascular invasion. Tumor samples from 88 patients with primary breast cancer were analyzed. The immunoreactivity of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 in tumors was correlated with clinical and pathological features, as well as SLN status. Nonparametric, Mann-Whittney, Kruskal-Wallis, and Spearmann tests were used. Categorical variables were analyzed by the Pearson test. No statistically significant correlation was found between the amount of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 and the presence of tumor cells in the SLN. However, larger tumor diameter (P < 0.01) and the presence of vascular invasion (P < 0.01) were correlated positively with a positive SLN. A significant correlation of higher VEGF levels (P = 0.04) and lower TIMP-1 levels (P = 0.04) with ductal histology was also observed. Furthermore, lower TIMP-2 levels showed a statistically significant correlation with younger age (<50 years) and larger tumor diameter (2.0-5.0 cm). A positive SLN correlated significantly with a larger tumor diameter and the presence of vascular invasion. Higher VEGF and lower TIMP-1 levels were observed in patients with ductal tumors, while higher TIMP-1 levels were observed in lobular tumors.
Resumo:
Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF). Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine) can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg) by intraperitoneal injections of thioacetamide (200 mg/kg). Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1) and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a) reduced the relative mRNA expression of the genes: Col-α1 (-53%), TIMP-1 (-31.7%), TGF-β1 (-57.7%), and MMP-2 (-41.6%), whereas Plau mRNA remained unchanged; b) reduced GGT (-43.1%), ALT (-17.6%), and AST (-12.2%) serum levels; c) increased liver weight (11.3%), and reduced liver collagen (-37.1%), regenerative nodules size (-22.1%), and fibrous septum thickness. Progranulin protein (immunohistochemistry) and mRNA (in situ hybridization) were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.
Resumo:
Systeemisen inflammaation on todettu olevan yhteydessä sydän- ja verisuonisairauksiin. Parodontiumin tulehdukset voivat aiheuttaa tai pitää yllä systeemistä tulehdustilaa. Tässä tutkimuksessa selvitettiin syljestä mitattavissa olevien tulehdusmarkkereiden, interleukiini 17:n (lL-17), matriksin metalloproteinaasi 9:n (MMP-9) ja sen kudosinhibiittorin (TIMP:n) yhteyttä hypertensioon, joka on sydän- ja verisuonisairauksien tärkeä riskitekijä. Aineistona käytettiin Terveys 2000 -tutkimuksen osaotosta (n=215), jolta oli kerätty sylki näytteet tutkimuksen yhteydessä. Diabeetikot ja verenpainelääkitystä käyttävät jätettiin tämän tutkimuksen ulkopuolelle. Tutkimuksessa verrattiin tilastollisin menetelmin syljen IL-17 -, MMP-9- ja TIMP-1-pitoisuuksia systoliseen (SVP) ja diastoliseen (DVP) verenpaineeseen, jotka oli jaoteltu optimaaliseen verenpaineeseen (SVP < 120 ja DVP < 80), lievään hypertensioon (120:S SVP < 140 tai 80:S DVP < 90) ja hypertensioon (SVP 2 140 tai DVP 2 90). Syljen IL-17 -pitoisuuksien havaittiin olevan korkeammat hypertensiivisillä tutkittavilla kuin tutkittavilla, joilla oli optimaalinen verenpaine. Syljen IL-17 - ja MMP-9-pitoisuudet korreloivat positiivisesti systolisen verenpaineen kanssa. MMP-9 korreloi positiivisesti myös diastolisen verenpaineen kanssa. IL-17 ja TIMP-1 assosioivat kohonneen verenpaineen kanssa myös sen jälkeen, kun ikä, sukupuoli, painoindeksi, tupakointi, koulutusaste ja CRP oli otettu huomioon. Kaikki tulokset olivat tilastollisesti merkitseviä (p<0,05).
Resumo:
As lesões crônicas do fígado são resultantes de agressões persistentes, onde a desorganização e destruição do tecido podem desencadear processos de regeneração e fibrose. Para que a integridade e homeostase do órgão sejam restauradas, várias vias intracelulares e intercelulares são ativadas. Uma delas é a através da liberação de moléculas pró-fibrogênicas, a exemplo da lectina solúvel bgalactosídea, a galectina-3 (Gal-3). A alta expressão dessa lectina tem sido associada a fibrogênese no fígado. A descoberta de moléculas capazes de se ligar à Gal-3 e inibir a sua ação são importantes no desenvolvimento de terapias antifibrosantes. A pectina cítrica modificada (PCM) e a N-acetilactosamina (LacNAc) demonstraram ação benéfica no tratamento de doenças fibróticas, incluindo renais e cardíacas, contudo, pouco se sabe sobre suas eficácias na fibrose hepática. Diante disso, o objetivo deste estudo foi investigar os efeitos das administrações da PCM e LacNAc quanto aos níveis de Gal-3 e fibrose em modelo experimental de lesão hepática crônica. Inicialmente, a fibrose hepática foi induzida em camundongos C57BL/6 pela administração de tetracloreto de carbono a 20 por cento diluído em azeite de oliva. Grupos de camundongos com dois ou quatro meses de lesão foram tratados com PCM (1 por cento e 5 por cento, fornecida ad libitum) e com LacNAc, por via intraperitoneal. Adicionalmente, camundongos knockouts para o gene da Gal-3 (Gal-3-/-) foram utilizados como um controle. Subsequentemente às intervenções, análises morfométricas, bioquímicas, imunológicas e de biologia molecular foram realizadas. Na análise morfométrica, não se verificou alteração no percentual de tecido fibroso entre os grupos tratados com PCM (1 por cento e 5 por cento) ou LacNAc quando comparados com seus respectivos controles, o que foi confirmado pela dosagem dos níveis de hidroxiprolina. Adicionalmente, não foi observada alteração dos níveis de Gal-3, MMP-9 e TIMP-1 após tratamento com os inibidores. Os resultados obtidos indicaram que a PCM e a LacNAc não foram capazes de inibir a Gal-3 no fígado, e portanto, não interferiram na deposição de tecido fibroso nesse modelo experimental
Resumo:
PURPOSE: Soy isoflavones may inhibit tumor cell invasion and metastasis via their effects on matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). The current study investigates the effects of daidzein, R- and S-equol on the invasion of MDA-MB-231 human breast cancer cells and the effects of these compounds on MMP/TIMP expression at the mRNA level. METHODS: The anti-invasive effects of daidzein, R- and S-equol (0, 2.5, 10, 50 μM) on MDA-MB-231 cells were determined using the Matrigel invasion assay following 48-h exposure. Effects on MMP-2, MMP-9, TIMP-1 and TIMP-2 expression were assessed using real-time PCR. Chiral HPLC analysis was used to determine intracellular concentrations of R- and S-equol. RESULTS: The invasive capacity of MDA-MB-231 cells was significantly reduced (by approximately 50-60 %) following treatment with 50 μM daidzein, R- or S-equol. Anti-invasive effects were also observed with R-equol at 2.5 and 10 μM though overall equipotent effects were induced by all compounds. Inhibition of invasion induced by all three compounds at 50 μM was associated with the down-regulation of MMP-2, while none of the compounds tested significantly affected the expression levels of MMP-9, TIMP-1 or TIMP-2 at this concentration. Following exposure to media containing 50 μM R- or S-equol for 48-h intracellular concentrations of R- and S-equol were 4.38 ± 1.17 and 3.22 ± 0.47 nM, respectively. CONCLUSION: Daidzein, R- and S-equol inhibit the invasion of MDA-MB-231 human breast cancer cells in part via the down-regulation of MMP-2 expression, with equipotent effects observed for the parent isoflavone daidzein and the equol enantiomers.
Resumo:
Aims: Ameloblastoma is an odontogenic neoplasm with local invasiveness and recurrence. We have previously suggested that growth factors and matrix metalloproteinases (MMPs) influence ameloblastoma invasiveness(1). The aim was to study expression of MMPs, tissue inhibitor of metalloproteinases (TIMPs) and growth factors in ameloblastoma. Methods and results: Thirteen cases of solid/multicystic ameloblastoma were examined. As a control, calcifying cystic odontogenic tumour (CCOT), a non-invasive odontogenic neoplasm with ameloblastomatous epithelium was also studied. Immunohistochemistry detected MMPs, TIMPs and growth factors in ameloblastoma and CCOT. The labelling index (LI) of MMP-9 and TIMP-2 was significantly higher in ameloblastoma compared with CCOT. The LI of epidermal growth factor (EGF), transforming growth factor (TGF)-alpha and epidermal growth factor receptor (EGFR) was also increased in ameloblastoma. This neoplasm showed greater expression of MMPs, TIMPs and growth factors compared with CCOT. We then analysed these molecules in ameloblastoma cells and stroma. Ameloblastoma cells exhibited increased LI of MMP-1, -2 and EGFR. We found a positive correlation between EGF and TIMP-1, and between TGF-alpha and TIMP-2. It is known that signals generated by growth factors are transduced by the ERK pathway. Ameloblastoma stroma exhibited the phosphorylated (activated) form of ERK. Conclusions: These results suggest an interplay involving growth factors MMPs and TIMPs that may contribute to ameloblastoma behaviour. Signals generated by this molecular network would be transduced by ERK 1/2 pathway.