958 resultados para THERMAL ENVIRONMENT
Resumo:
O conforto térmico é uma temática interessante, uma vez que está presente no nosso dia-a-dia. É sabido que um ambiente térmico afeta o bem-estar de uma pessoa e pode influenciar a produtividade intelectual. Se o ambiente térmico tiver características de “quente” ou de “frio” pode suscitar desconforto térmico, ou até mesmo stress térmico. Nestas condições o ambiente térmico pode afetar a saúde da pessoa. Usando o laboratório mais acessível e gratuito, a Atmosfera, é possível através de atividades simples interpretar fisicamente as características de um ambiente térmico. A Atmosfera é, também, um fascinante laboratório de ensino, porque nela se podem estudar alguns processos físicos lecionados ao longo dos mais variados níveis de ensino nas disciplinas de Física e Química e Geografia. Na Atmosfera, podem-se fazer diversos estudos simples que podem de uma forma fácil responder a inquietantes questões relacionadas com o bem-estar de uma pessoa, mais concretamente se está em conforto térmico. Neste trabalho é feita a introdução da temática “Mudança Global” lecionada no 8º ano de escolaridade. A ponte para esta temática pode usar diferentes caminhos, como por exemplo usando a temática “Energia”. Procurou-se responder à questão de investigação que delineou todo o “caminho” deste trabalho, ou seja, “Quais as contribuições para o Ensino nas Ciências, quando se usa a temática “Conforto Térmico”, numa perspetiva de ensino e aprendizagem?” A resposta a esta questão central passou pelos seguintes objetivos: articular as condições atmosféricas com o conforto térmico; avaliar o conforto térmico numa sala de aula usando instrumentos meteorológicos simples, que podem ser construídos pelos alunos; avaliar quais os índices térmicos que devem ser usados para avaliar o conforto térmico de forma simples para os alunos; analisarem os materiais usados na construção de edifícios escolares que condicionam o conforto térmico numa perspetiva de balanço energético; sugerir atividades experimentais que podem desenvolver competências na temática Conforto Térmico; analisar a influência do conforto térmico registado no interior de uma sala de aula e a aprendizagem. Neste trabalho foi usada uma inovadora metodologia e ferramentas para interpretar como um ambiente térmico pode influenciar o bem-estar de um aluno e a construção do seu conhecimento. Recorreu-se à aplicação de um índice de Sensação de Conforto Térmico, EsConTer, de fácil uso e a uma escala térmica de cores onde o aluno indicava a sua sensação térmica. Os resultados obtidos mostraram inequivocamente que o ambiente térmico de uma sala de aula pode ser previsto através da aplicação do índice EsConTer e que a sensação térmica sentida pelos alunos pode ser registada com a utilização de uma escala térmica de cores. O conforto térmico é uma temática interessante, uma vez que está presente no nosso dia-a-dia. É sabido que um ambiente térmico afeta o bem-estar de uma pessoa e pode influenciar a produtividade intelectual. Se o ambiente térmico tiver características de “quente” ou de “frio” pode suscitar desconforto térmico, ou até mesmo stress térmico. Nestas condições o ambiente térmico pode afetar a saúde da pessoa. Usando o laboratório mais acessível e gratuito, a Atmosfera, é possível através de atividades simples interpretar fisicamente as características de um ambiente térmico. A Atmosfera é, também, um fascinante laboratório de ensino, porque nela se podem estudar alguns processos físicos lecionados ao longo dos mais variados níveis de ensino nas disciplinas de Física e Química e Geografia. Na Atmosfera, podem-se fazer diversos estudos simples que podem de uma forma fácil responder a inquietantes questões relacionadas com o bem-estar de uma pessoa, mais concretamente se está em conforto térmico. Neste trabalho é feita a introdução da temática “Mudança Global” lecionada no 8º ano de escolaridade. A ponte para esta temática pode usar diferentes caminhos, como por exemplo usando a temática “Energia”. Procurou-se responder à questão de investigação que delineou todo o “caminho” deste trabalho, ou seja, “Quais as contribuições para o Ensino nas Ciências, quando se usa a temática “Conforto Térmico”, numa perspetiva de ensino e aprendizagem?” A resposta a esta questão central passou pelos seguintes objetivos: articular as condições atmosféricas com o conforto térmico; avaliar o conforto térmico numa sala de aula usando instrumentos meteorológicos simples, que podem ser construídos pelos alunos; avaliar quais os índices térmicos que devem ser usados para avaliar o conforto térmico de forma simples para os alunos; analisarem os materiais usados na construção de edifícios escolares que condicionam o conforto térmico numa perspetiva de balanço energético; sugerir atividades experimentais que podem desenvolver competências na temática Conforto Térmico; analisar a influência do conforto térmico registado no interior de uma sala de aula e a aprendizagem. Neste trabalho foi usada uma inovadora metodologia e ferramentas para interpretar como um ambiente térmico pode influenciar o bem-estar de um aluno e a construção do seu conhecimento. Recorreu-se à aplicação de um índice de Sensação de Conforto Térmico, EsConTer, de fácil uso e a uma escala térmica de cores onde o aluno indicava a sua sensação térmica. Os resultados obtidos mostraram inequivocamente que o ambiente térmico de uma sala de aula pode ser previsto através da aplicação do índice EsConTer e que a sensação térmica sentida pelos alunos pode ser registada com a utilização de uma escala térmica de cores.O conforto térmico é uma temática interessante, uma vez que está presente no nosso dia-a-dia. É sabido que um ambiente térmico afeta o bem-estar de uma pessoa e pode influenciar a produtividade intelectual. Se o ambiente térmico tiver características de “quente” ou de “frio” pode suscitar desconforto térmico, ou até mesmo stress térmico. Nestas condições o ambiente térmico pode afetar a saúde da pessoa. Usando o laboratório mais acessível e gratuito, a Atmosfera, é possível através de atividades simples interpretar fisicamente as características de um ambiente térmico. A Atmosfera é, também, um fascinante laboratório de ensino, porque nela se podem estudar alguns processos físicos lecionados ao longo dos mais variados níveis de ensino nas disciplinas de Física e Química e Geografia. Na Atmosfera, podem-se fazer diversos estudos simples que podem de uma forma fácil responder a inquietantes questões relacionadas com o bem-estar de uma pessoa, mais concretamente se está em conforto térmico. Neste trabalho é feita a introdução da temática “Mudança Global” lecionada no 8º ano de escolaridade. A ponte para esta temática pode usar diferentes caminhos, como por exemplo usando a temática “Energia”. Procurou-se responder à questão de investigação que delineou todo o “caminho” deste trabalho, ou seja, “Quais as contribuições para o Ensino nas Ciências, quando se usa a temática “Conforto Térmico”, numa perspetiva de ensino e aprendizagem?” A resposta a esta questão central passou pelos seguintes objetivos: articular as condições atmosféricas com o conforto térmico; avaliar o conforto térmico numa sala de aula usando instrumentos meteorológicos simples, que podem ser construídos pelos alunos; avaliar quais os índices térmicos que devem ser usados para avaliar o conforto térmico de forma simples para os alunos; analisarem os materiais usados na construção de edifícios escolares que condicionam o conforto térmico numa perspetiva de balanço energético; sugerir atividades experimentais que podem desenvolver competências na temática Conforto Térmico; analisar a influência do conforto térmico registado no interior de uma sala de aula e a aprendizagem. Neste trabalho foi usada uma inovadora metodologia e ferramentas para interpretar como um ambiente térmico pode influenciar o bem-estar de um aluno e a construção do seu conhecimento. Recorreu-se à aplicação de um índice de Sensação de Conforto Térmico, EsConTer, de fácil uso e a uma escala térmica de cores onde o aluno indicava a sua sensação térmica. Os resultados obtidos mostraram inequivocamente que o ambiente térmico de uma sala de aula pode ser previsto através da aplicação do índice EsConTer e que a sensação térmica sentida pelos alunos pode ser registada com a utilização de uma escala térmica de cores.No geral, os alunos com a professora investigadora puderam afirmar que a avaliação de conhecimentos adquiridos pelos alunos, na sala de aula, é condicionada pela sensação térmica sentida para ambientes considerados de “frios” e ambientes considerados de “quentes”. Concluiu-se, que o processo de aprendizagem é afetado pelas condições termohigrométricas do ambiente que rodeiam os alunos. É importante salientar, que a análise de resultados mostrou que quando os valores da sensação térmica sentida pelos alunos é inferior a -0,5, ou superior a +0,5 da escala térmica de cores, os resultados obtidos da avaliação de conhecimentos tendem a ser negativos e quando a sensação térmica sentida pelos alunos se localiza na zona de conforto térmico, ou seja, entre os valores de -0,5 e +0,5, os resultados são, no geral, positivos, o que confirma que os resultados das avaliações de conhecimentos, para os alunos, depende do ambiente térmico. Foi possível ainda constatar que quando a sensação térmica sentida pelos alunos regista valores baixos com tendência a “frio” (-2) ou altos com tendência a “quente” (+2) os resultados obtidos pelos alunos são, no geral, bastante negativos. O grau de insatisfação previsto para cada ambiente térmico quando se usou o índice EsConTer, mostrou concordância de interpretação em face da sensação térmica sentida pelos alunos e registada na escala de sensação térmica de cores. Pensamos ter evidências suficientes para afirmar que a abordagem didática utilizada, considerada de inovadora, durante a realização do trabalho, na disciplina de Ciências Físico-Químicas promoveu nos alunos o gosto pela disciplina e que os resultados obtidos indicam que: os alunos sentiram interesse e motivação pela disciplina, conseguiram compreender a sua importância para o seu futuro e para o seu dia-a-dia, pois conseguiram ver a aplicação dos diversos conteúdos abordados na disciplina em diversas situações do seu quotidiano; a verdadeiros “investigadores”, suscitando assim um maior envolvimento e motivação nos alunos; a utilização de questões problema para a introdução dos conteúdos foi uma estratégia que os alunos consideraram uma mais-valia, uma vez que associados a essas questões existiram discussões e debates que promoveram a participação de todos os alunos, tornando as aulas mais interativas e mais motivantes. Importa salientar que ao longo dos diversos debates surgiram, ainda, mais questões que foram muito úteis, pois os alunos aquando da realização das atividades práticas tentaram sempre ir em busca das respostas às suas inquietações e ajudaram a que a professora investigadora implementasse, ainda mais, atividades para que os alunos conseguissem por eles próprios encontrar as respostas e percebessem o que estavam a trabalhar; as aulas foram importantes para a aprendizagem dos conteúdos da disciplina e contribuíram para desmitificar a ideia de que a disciplina de Física e Química é “difícil”, pois os alunos perceberam que os conteúdos abordados podem de uma forma simples e eficaz serem aplicados a situações do seu dia-a-dia. Assim, considerando os pressupostos anteriores, podemos afirmar que as estratégias implementadas foram, de uma forma geral, promotoras de motivação, de participação dos alunos nas aulas e nas suas aprendizagens. Estamos convictos de que toda a metodologia adotada é uma forte contribuição para o Ensino nas Ciências, nomeadamente, na Física e Química, usando uma temática Conforto Térmico e que o método usado é uma ferramenta importante e inovadora para avaliar como situações de desconforto térmico podem condicionar o processo de aprendizagem dos alunos. Pensamos que este trabalho é bastante interessante para os profissionais de ensino, nomeadamente para os professores de Física e Química e de Geografia, uma vez que mostra como a partir de dados como a temperatura do ar e da humidade relativa do ar se podem fazer fascinantes estudos e envolver ativamente os alunos. Nos trabalhos desenvolvidos houve sempre o cuidado de criar metodologias dinâmicas e motivadoras, aliadas sempre à perspetiva CTSA, com vista ao melhoramento das aulas e, também, deixar uma contribuição para os colegas, profissionais de ensino, que eventualmente analisarem este documento. A metodologia adoptada permitiu encontrar respostas às questões formuladas. Por último, podemos afirmar que numa problemática energética que afeta a humanidade, os políticos através de alguns indicadores apresentados neste estudo, poderão considerar que os resultados obtidos pelos alunos são influenciados pelo ambiente térmico de cada sala de aula e que a solução de melhorar resultados é, também, criar condições de conforto térmico nas salas de aula das escolas. Partilhamos da opinião que os resultados nacionais obtidos pelos alunos por si só são redutores em análise comparativa de melhor ou pior escola em termos de ranking. Consideramos que uma escola confortável gera condições de bem-estar que condiciona o processo de aprendizagem ao longo do ano.
Resumo:
The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.
Resumo:
The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.
Resumo:
Across taxa, the early rearing environment contributes to adult morphological and physiological variation. For example, in birds, environmental temperature plays a key role in shaping bill size and clinal trends across latitudinal/thermal gradients. Such patterns support the role of the bill as a thermal window and in thermal balance. It remains unknown whether bill size and thermal function are reversibly plastic. We raised Japanese quail in warm (308C) or cold (158C) environments and then at a common intermediate temperature. We predicted that birds raised in cold temperatures would develop smaller bills than warm-reared individuals, and that regulation of blood flow to the bill in response to changing temperatures would parallel the bill’s role in thermal balance. Cold-reared birds developed shorter bills, although bill size exhibited ‘catch-up’ growth once adults were placed at a common temperature. Despite having lived in a common thermal environment as adults, individuals that were initially reared in the warmth had higher bill surface temperatures than coldreared individuals, particularly under cold conditions. This suggests that blood vessel density and/or the control over blood flow in the bill retained a memory of early thermal ontogeny. We conclude that post-hatch temperature reversibly affects adult bill morphology but irreversibly influences the thermal physiological role of bills and may play an underappreciated role in avian energetics
Resumo:
La exposición a altas temperaturas en ambientes laborales conlleva a cambios fisiológicos que se manifiestan como mecanismos de compensación a la alteración del equilibrio homeostático corporal. El propósito del presente estudio fue determinar los cambios y el comportamiento de variables fisiológicas a través de frecuencia cardiaca, densidad urinaria, temperatura corporal y tasa de sudoración, en dos escenarios con condiciones térmicas ambientales diferentes definidas por la exposición (grupo expuesto y no expuesto). Adicional, en dos áreas de trabajo diferentes correspondientes al proceso de fundición del acero, una de ellas, Horno electrico donde se hace la fusión de la chatarra y demás materias primas, obteniendo así el acero liquido, el cual se vuelca en el Horno Cuchara y en este, libre ya de escoria se realiza el afino y ajuste definitivo de la composición química del acero. Objetivos: Identificar la relación de las respuestas fisiológicas a carga física y térmica, comparar las respuestas funcionales registradas en el grupo expuestos y no expuestos y contribuir a la introducción de nuevos indicadores para evaluar carga e intensidad de trabajo con fines de normalización ergonómica. Método: Investigación experimental en una muestra de 30 trabajadores evaluados en dos condiciones ambientales diferentes. La temperatura oral se registró al inicio de la jornada y con intervalos de toma de 3 horas. La frecuencia cardiaca (HR) se registró durante las 8 horas de trabajo continuas con pulsometría. Igualmente, se estimó la sudoración por pérdida de masa corporal entre el inicio y el final de la jornada laboral teniendo en cuenta ingestas y perdidas. El procesamiento estadístico se realizó con el programa SPSS v. 20.0, calculándose medidas de tendencia central y dispersión, prueba de wilconxon para las variables dependientes y correlación para identificar asociaciones. Para todos los cálculos se asumió p <0,05. Resultados: No se observaron diferencias significativas frente a la variación de la frecuencia cardiaca (media y máxima), la tasa de sudoración y la densidad urinaria. A pesar de que no hubo diferencias significativas en la variación de la temperatura corporal en horno cuchara, si se observó una diferencia significativa en el horno eléctrico Conclusión: Aunque no se encontraron diferencias estadísticamente significativas en la mayoría de las variables, es un hecho que la exposición a temperaturas elevadas extremas tiene un impacto en el comportamiento fisiológico del organismo. Futuros estudios deben considerar la posibilidad de estandarizar protocolos que permitan la exposición térmica basada en el perfil particular de cada trabajador.
Resumo:
Air distribution systems are one of the major electrical energy consumers in air-conditioned commercial buildings which maintain comfortable indoor thermal environment and air quality by supplying specified amounts of treated air into different zones. The sizes of air distribution lines affect energy efficiency of the distribution systems. Equal friction and static regain are two well-known approaches for sizing the air distribution lines. Concerns to life cycle cost of the air distribution systems, T and IPS methods have been developed. Hitherto, all these methods are based on static design conditions. Therefore, dynamic performance of the system has not been yet addressed; whereas, the air distribution systems are mostly performed in dynamic rather than static conditions. Besides, none of the existing methods consider any aspects of thermal comfort and environmental impacts. This study attempts to investigate the existing methods for sizing of the air distribution systems and proposes a dynamic approach for size optimisation of the air distribution lines by taking into account optimisation criteria such as economic aspects, environmental impacts and technical performance. These criteria have been respectively addressed through whole life costing analysis, life cycle assessment and deviation from set-point temperature of different zones. Integration of these criteria into the TRNSYS software produces a novel dynamic optimisation approach for duct sizing. Due to the integration of different criteria into a well- known performance evaluation software, this approach could be easily adopted by designers in busy nature of design. Comparison of this integrated approach with the existing methods reveals that under the defined criteria, system performance is improved up to 15% compared to the existing methods. This approach is interpreted as a significant step forward reaching to the net zero emission building in future.
Resumo:
This paper reports the results of a parametric CFD study on idealized city models to investigate the potential of slope flow in ventilating a city located in a mountainous region when the background synoptic wind is absent. Examples of such a city include Tokyo in Japan, Los Angeles and Phoenix in the US, and Hong Kong. Two types of buoyancy-driven flow are considered, i.e., slope flow from the mountain slope (katabatic wind at night and anabatic wind in the daytime), and wall flow due to heated/cooled urban surfaces. The combined buoyancy-driven flow system can serve the purpose of dispersing the accumulated urban air pollutants when the background wind is weak or absent. The microscopic picture of ventilation performance within the urban structures was evaluated in terms of air change rate (ACH) and age of air. The simulation results reveal that the slope flow plays an important role in ventilating the urban area, especially in calm conditions. Katabatic flow at night is conducive to mitigating the nocturnal urban heat island. In the present parametric study, the mountain slope angle and mountain height are assumed to be constant, and the changing variables are heating/cooling intensity and building height. For a typical mountain of 500 m inclined at an angle of 20° to the horizontal level, the interactive structure is very much dependent on the ratio of heating/cooling intensity as well as building height. When the building is lower than 60 m, the slope wind dominates. When the building is as high as 100 m, the contribution from the urban wall flow cannot be ignored. It is found that katabatic wind can be very beneficial to the thermal environment as well as air quality at the pedestrian level. The air change rate for the pedestrian volume can be as high as 300 ACH.
Resumo:
Chongqing is the largest central-government-controlled municipality in China, which is now under going a rapid urbanization. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimates? An integrated study comprising three different research approaches is adopted in the present paper. By analyzing the observed annual climate data, an average rising trend of 0.10◦C/decade was found for the annual mean temperature from 1951 to 2010 in Chongqing,indicating a higher degree of urban warming in Chongqing. In addition, two complementary types of field measurements were conducted: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.The urban heat island intensity in Chongqing is stronger in summer compared to autumn and winter.The maximum urban heat island intensity occurs at around midnight, and can be as high as 2.5◦C. In the day time, an urban cool island exists. Local greenery has a great impact on the local thermal environment.Urban green spaces can reduce urban air temperature and therefore mitigate the urban heat island. The cooling effect of an urban river is limited in Chongqing, as both sides of the river are the most developed areas, but the relative humidity is much higher near the river compared with the places far from it.
Resumo:
The urban heat island (UHI) phenomenon has been studied extensively, but there are relatively fewer reports on the so-called urban cool island (UCI) phenomenon. We reveal here that the UCI phenomenon exists in Hong Kong during the day, and is associated with the UHI at night under all wind and cloud conditions. The possible mechanisms for the UCI phenomenon in such a high-rise compact city have been discovered using a lumped urban air temperature model. A new concept of urban cool island degree hours (UCIdh) to measure the UCI intensity and duration is proposed. Our analyses reveal that when anthropogenic heat is small or absent, a high-rise and high-density city experiences a significant daytime UCI effect. This is explained by an intensified heat storage capacity and the reduced solar radiation gain of urban surfaces. However, if anthropogenic heat in the urban area increases further, the UCI phenomenon still exists, yet UCIdh decrease dramatically in a high-rise compact city. In a low-rise, low-density city, the UCI phenomenon also occurs when there is no anthropogenic heat, but easily disappears when there is little anthropogenic heat, and the UHI phenomenon dominates. This probably explains why the UHI phenomenon is often observed, but the UCI phenomenon is rarely observed. The co-existence of urban heat/cool island phenomena implies reduction of the daily temperature range (DTR) in such cities, and its dependence on urban morphology also implies that urban morphology can be used to control the urban thermal environment.
Resumo:
O calor, no ambiente onde o ser humano vive ou trabalha, atribui-se a: -fatores físicos: relação entre temperatura, radiação, umidade e movimento do ar; fatores humanos: o ser humano atua como fonte de energia através de seu metabolismo e atividade física. o calor caracterizado por um determinado meio ambiente é o resultado da atuação de diferentes variáveis, tais como: sistema de construção, situação geográfica do ambiente físico, climatização artificial, etc.; idade, sexo, capacidade física, estado de aclimatação, vestuário, tipo, carga e regime de trabalho, etc. A partir do momento em que o indivíduo for introduzido num determinado meio ambiente térmico, todos estes fatores vão influenciar a transmissão de calor entre ele e o ambiente. Na pretensão de haver equilíbrio térmico no meio ambiente quente, constata-se a necessidade de providenciar medidas de proteção a nível do sujeito e do ambiente, para que prevaleçam situações ambientais "confortáveis", ou pelo menos, "tolerantes". Desse modo, através da: definição das condições térmicas tolerantes e de conforto, parte-se para projetar meios ambientes de trabalho, que tornem praticáveis um isolamento térmico do calor exterior, assim como a perda de calor de dentro para fora. Atuando-se sobre variáveis individuais e ambientais estaremos incidindo diretamente sobre os meios de transmissão, procurando-se diminuir a quantidade de calor que o organismo produz e/ou recebe e aumentar a possibilidade de dissipá-lo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Layer mortality due to heat stress is an important economic loss for the producer. The aim of this study was to determine the mortality pattern of layers reared in the region of Bastos, SP, Brazil, according to external environment and bird age. Data mining technique were used based on monthly mortality records of hens in production, 135 poultry houses, from January 2004 to August 2008. The external environment was characterized according maximum and minimum temperatures, obtained monthly at the meteorological station CATI in the city of Tupa, SP, Brazil. Mortality was classified as normal (<= 1.2%) or high (> 1.2%), considering the mortality limits mentioned in literature. Data mining technique produced a decision tree with nine levels and 23 leaves, with 62.6% of overall accuracy. The hit rate for the High class was 64.1% and 59.9% for Normal class. The decision tree allowed finding a pattern in the mortality data, generating a model for estimating mortality based on the thermal environment and bird age.
Resumo:
A estimativa de conforto térmico na avicultura moderna é importante para que sistemas de climatização possam ser acionados no tempo correto, diminuindo perdas e aumentando rendimentos. Embora a literatura corrente apresente alguns índices de conforto térmico, que são aplicados para essa estimativa, estes são baseados apenas em condições do ambiente térmico e não consideram fatores importantes inerentes aos animais, tais como genética e capacidade de aclimatação, provendo, geralmente, uma estimativa inadequada do conforto térmico das aves. Este trabalho desenvolveu o Índice Fuzzy de Conforto Térmico (IFCT), com o intuito de estimar o conforto térmico de frangos de corte, considerando que o mecanismo usado pelas aves para perda de calor em ambientes fora da zona termoneutra é a vasodilatação periférica, que aumenta a temperatura superficial, e que pode ser usada como indicador do estado de conforto. O IFCT foi desenvolvido a partir de dois experimentos, que proporcionaram 108 cenários ambientais diferentes. Foram usadas imagens termográficas infravermelhas, para o registro dos dados de temperaturas superficiais das penas e da pele, e o grau de empenamento das aves. Para os mesmos cenários de ambiente térmico observados nos experimentos, foram comparados os resultados obtidos usando o IFCT e o Índice de Temperatura e Umidade (ITU). Os resultados validaram o IFCT para a estimativa do conforto térmico de frangos de corte, sendo específico na estimativa de condições de perigo térmico, usual em alojamentos em países de clima tropical. Essa característica é desejável em modelos que estimem o bem-estar térmico de frangos de corte, pois situações classificadas como perigo acarretam no dispêndio de recursos para evitar perdas produtivas.
Resumo:
Este estudo foi conduzido para avaliar os efeitos dos níveis de lisina digestível da ração e da temperatura ambiente sobre o desempenho e as características de carcaça de frangos de corte dos 22 a 42 dias de idade. Foram utilizados 672 frangos Ross®, machos, com peso médio de 726 g, em delineamento inteiramente casualizado segundo arranjo fatorial 4 × 4, com seis repetições de sete aves. Os frangos foram mantidos nas temperaturas de 18,5; 21,1; 24,5 e 27,0ºC e foram alimentados com rações com diferentes níveis de lisina digestível (0,934; 1,009; 1,084 e 1,159%). Não houve interação temperatura ambiente × níveis de lisina da ração para as variáveis estudadas. O consumo de ração (CR) e o ganho de peso (GP) não foram influenciados pelos níveis de lisina. O consumo de ração reduziu linearmente com a temperatura ambiente e o ganho de peso aumentou até a temperatura estimada de 21,5ºC. A conversão alimentar melhorou até o nível estimado de 1,085% de lisina digestível. Os pesos de carcaça (PC), peito com osso (PPO), coxa (PCX) e sobrecoxa (PSCX) aumentaram até as temperaturas estimadas de 21,9; 21,0; 22,7 e 23,7ºC, respectivamente. Os rendimentos de carcaça (RC), coxa (RCX) e sobrecoxa (RSCX) aumentaram, enquanto o peso do peito sem osso (PPSO) e os rendimentos de peito com osso (RPO) e sem osso (RPSO) reduziram linearmente com a temperatura ambiente. O PCX e o RCX aumentaram, mas o RSCX reduziu linearmente com os níveis de lisina da ração. O PC, PPO, PSCX, RC, RPO e o RPSO não foram influenciados pelos níveis de lisina. A temperatura ambiente no intervalo de 18,5 e 27,0ºC não influenciou as exigências de lisina das aves. A condição para melhor conversão alimentar no período de 22 a 42 dias foi obtida com o nível de 1,085% de lisina digestível na ração e com a temperatura ambiente estimada de 23,3ºC.
Resumo:
This study proposes the development of thermal and energy consumption maps to generate useful planning information. A residential neighbourhood in a medium-sized city was selected as the study area. In this area, 40 points were taken as urban reference points where air temperatures at the pedestrian level were collected. At the same time, rural temperatures made available by the city meteorological station were registered. Data of electrical energy consumption of the building units (houses and apartments) were collected through a household survey that was also designed to identify the users' income levels. Then, maps were developed so that the configuration of urban heat islands and electrical energy consumption could be visualised, compared and analysed. The results showed that the income level was the most important variable influencing electrical energy consumption. However, a strong relationship of the consumption with the thermal environment was also observed.