990 resultados para THERMAL DEFORMATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is concerned with understanding the behavior of polyethylene terephthalate (PET) in the injection stretch blow molding (ISBM) process where it is typically biaxially stretched to form bottles for the packaging industry. A comprehensive experimental study was undertaken, analyzing the behavior of three different grades of PET under constant width (CW), simultaneous (EB), and sequential (SQ) equal biaxial deformation. Experiments were carried out at temperature and strain rate ranges of 80–110C and 1 /s to 32 /s, respectively, to different stretch ratios. Results show that the biaxial deformation behavior of PET exhibits a strong dependency on forming temperature, strain rate, stretch ratio,deformation mode, and molecular weight. The tests were also monitored via a high speed thermal image camera which showed an increase in temperature between 5C and 15C observed depending on the stretch conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser welding is an important process for fabricating complex components involving NiTi shape memory
alloy. As welding is a thermal process, the amount of heat input and the rate of cooling have significant
impact on the microstructure and hence the resultant characteristics of NiTi. In this study, the effect of
laser welding and post-weld-annealing from 573 K to 1173 K on the thermal phase transformation behaviors,
tensile deformation and micro-hardness characteristics of the laser-welded NiTi thin foils were investigated.
It was found that the as-welded sample exhibited inferior super-elasticity compared to the base
material, and the super-elasticity could be partially restored by annealing at 573 K. On the other hand,
annealing of the weldment above the recrystallization temperature would lower the super-elasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composites containing 4 wt% MWCNTs were prepared by melt mixing followed by compression moulding into sheet. Compression moulded sheets were heated to just below the melting temperature and biaxially stretched at ratios (SRs) of 2, 2.5 and 3.0. The effect of stretching on the thermal and mechanical properties of the sheet was studied by differential scanning calorimetry (DSC) and tensile testing. DSC results show that the crystallinity of all the stretched samples increases by approximately 13% due to strain induced crystallization. The melting temperature of the biaxially stretched samples increases only slightly while crystallization temperature is not affected. Tensile test results indicate that at a SR of 2.5 the elastic modulus of the stretched composites increases by 17.6% relative to the virgin HDPE, but the breaking strength decreases by 33%. While the elastic modulus and breaking strength of the HDPE/MWCNT samples continue to increase as SR increases they drop off after a SR of 2.5 for the virgin HDPE. This is probably due to the constraining influence of the nanotubes preventing the relaxation of polymer chains caused by adiabatic heating at high SRs. The addition of MWCNTs results in significant strain hardening during deformation. While this will lead to increased energy requirement in forming it will also result in a more stable process and the ability to produce deep draw containers with more uniform wall thickness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetics of short-range ordering (SRO) in Ag with 21, 23 and 28 at% Zn is investigated by residual resistometry during isochronal and isothermal heat treatment for different states of post-deformation defect annealing after cold-rolling to about 30 and 60% thickness reduction. Resistivity changes due to pure ordering can be separated from the as-measured total resistivity change which includes defect annealing. Although the initial state of SRO of the as-rolled material can be estimated to be comparably low, for as-rolled and partially annealed states by appropriate thermal treatment evolution of SRO is achieved which corresponds quite well to that of recrystallized samples. It is observed, however, that quenched-in surplus vacancies contribute considerably to the ordering process for the recrystallized state and that this contribution is still increased by the grain growth during the final stage of annealing. It therefore turns out that SRO-kinetics under equilibrium vacancy conditions can be better observed in a state of post-deformation annealing, for which deformation induced point defects are annealed-out, but a relatively high dislocation density is still present to act as a vacancy sink. Copyright (C) 1996 Acta Metallurgica Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HDPE and PVC geomembranes are sensitive to changes in their properties when in contact with high temperatures. The effects of hot temperature on polymeric geomembranes are assessed by the ASTM D794 and ASTM D5721.This paper brings an analysis of degradation of the Poly Vinyl Chloride (PVC) and High Density Poly Ethylene (HDPE) geomembranes when exposed to conventional and air oven after specific periods.. Mechanical and physical properties were evaluated. OIT tests were also performanced to evaluate the level of oxidation degradation occurred on the HDPE geomembranes. Geomembranes of two thicknesses were tested: 1.0, 2.0 nun (PVC) and 0.8, 2.5 mm, (HDPE). The results obtained show, for example, that after the last period of exposure, the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to heat presented increases in deformation. OIT tests showed efficient to detect some level of degradation on the HDPE geomembranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of high temperature superconductor Bi2Sr2Ca2Cu3Ox. (Bi-2223) compound embedded in an Ag matrix requires the knowledge of critical current as a function of mechanical properties. Commercial tapes available in different types have been developed in industrial production scale in which a combination of small diameter filaments, long tape lengths and a ductile matrix results in a conductor with low crack formation and good tolerance against strain. The measurement of critical current and the evaluation of n-index from V-I characteristic curves of Bi-2223/Ag composite tapes subjected to an initial bending strain as a function of number of thermal cycles were done for two types of Bi-2223/Ag composite tapes: with and without steel tape reinforcement. The results showed that tapes with reinforcement presented small critical current degradation as a function of the number of thermal cycles whereas tapes without reinforcement exhibited steadily critical current degradation caused by the propagation of cracks. The n-index followed the same critical current behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical compatibility between geomembranes and site-specific waste liquids should be assessed since the waste liquids are highly complex mixtures. This paper presents some considerations about the chemical compatibility of geomembranes and some results of mechanical tests in HDPE and PVC geomembranes that were exposed to leachate and chemical residue (niobium). PVC and HDPE geomembranes of two thicknesses were tested: 1.0, 2.0 mm (PVC) and 0.8, 2.5 mm (HDPE). The results obtained show that after exposure the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to leachate and niobium residue presented increases in deformation. Melt flow index (MFI) tests were also carried out to verify the oxidation. © 2013 ejge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study evaluated and compared bone heating, drill deformation, and drill roughness after several implant osteotomies in the guided surgery technique and the classic drilling procedure. Materials and Methods: The tibias of 20 rabbits were used. The animals were divided into a guided surgery group (GG) and a control group (CG); subgroups were then designated (G0, G1, G2, G3, and G4, corresponding to drills used 0, 10, 20, 30 and 40 times, respectively). Each animal received 10 sequential osteotomies (5 in each tibia) with each technique. Thermal changes were quantified, drill roughness was measured, and the drills were subjected to scanning electron microscopy. Results: Bone temperature generated by drilling was significantly higher in the GG than in the CG. Drill deformation in the GG and CG increased with drill use, and in the CG a significant difference between GO and groups G3 and G4 was observed. In the GG, a significant difference between GO and all other groups was found. For GG versus CG, a significant difference was found in the 40th osteotomy. Drill roughness in both groups was progressive in accordance with increased use, but there was no statistically significant difference between subgroups or between GG and CG overall. Conclusion: During preparation of implant osteotomies, the guided surgery technique generated a higher bone temperature and deformed drills more than the classic drilling procedure. The increase in tissue temperature was directly proportional to the number of times drills were used, but neither technique generated critical necrosis-inducing temperatures. Drill deformation was directly proportional to the number of times the drills were used. The roughness of the drills was directly proportional to the number of reuses in both groups but tended to be higher in the GG group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results describing the physical, mechanical, and thermal properties (melt flow index - MFI and oxidative induction time - OIT) of high density polyethylene and poly (vinyl chloride) after weathering exposure (6, 12, 18, and 30 months). The materials exposed were geomembranes of two thicknesses: 1.0 and 2.0 mm (PVC) and 0.8 and 2.5 mm (HDPE). The climate parameters (average) obtained were 25 degrees C (temperature), 93 mm (precipitation), 66% (relative humidity), and 19 MJ/m(2). day (intensity of global radiation). Some results showed, for instance, that the behavior of the geomembranes changed after the exposures. A few minor variations in physical properties occurred. The density and thickness, for instance, varied 0.5-1.0% (average) for both the PVC and HDPE geomembranes. The mechanical properties changed as a function of the period of exposure. In general, some decreases were verified by the deformation of PVC. The samples became more rigid. In contrast, HDPE geomembranes became more ductile. Despite the variations in elasticity, some increases in deformability were verified. An MFI test showed some degradation in HDPE geomembranes. OIT tests revealed small values for both intact and exposed samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53 °C ± 0.53 °C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34 °C ± 0.25 °C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A volume-averaged two-phase model addressing the main transport phenomena associated with hot tearing in an isotropic mushy zone during solidification of metallic alloys has recently been presented elsewhere along with a new hot tearing criterion addressing both inadequate melt feeding and excessive deformation at relatively high solid fractions. The viscoplastic deformation in the mushy zone is addressed by a model in which the coherent mush is considered as a porous medium saturated with liquid. The thermal straining of the mush is accounted for by a recently developed model taking into account that there is no thermal strain in the mushy zone at low solid fractions because the dendrites then are free to move in the liquid, and that the thermal strain in the mushy zone tends toward the thermal strain in the fully solidified material when the solid fraction tends toward one. In the present work, the authors determined how variations in the parameters of the constitutive equation for thermal strain influence the hot tearing susceptibility calculated by the criterion. It turns out that varying the parameters in this equation has a significant effect on both liquid pressure drop and viscoplastic strain, which are key parameters in the hot tearing criterion. However, changing the parameters in this constitutive equation will result in changes in the viscoplastic strain and the liquid pressure drop that have opposite effects on the hot tearing susceptibility. The net effect on the hot tearing susceptibility is thus small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lensing effects in diode end-pumped Yb:YAG laser rods and discs are studied. Two mechanisms of refractive-index changes are taken into account, thermal and electronic (due to the difference between the excited- and ground-state Yb polarisabilities), as well as pump-induced deformation of the laser crystal. Under pulsed pumping, the electronic lensing effect prevails over the thermal one in both rods and discs. In rods pumped by a highly focused cw beam, the dioptric power of the electronic lens exceeds that of the thermal lens, whereas in discs steady-state lensing is predominantly due to the thermal mechanism. © 2009 Kvantovaya Elektronika and Turpion Ltd.