347 resultados para THEOBROMA-CACAO
Resumo:
The amount of cotyledon polyphenolic cells varies extensively within the Theobroma species. The polyphenolic compounds of these cells play a protective role and furthermore have an important function in the development of chocolate flavour. The morphology of the polyphenolic cells of the mesophyll is described and the development of these idioblasts in Theobroma cacao L., T. subincanum Mart., T. obovatum Klotzsch ex Bernoulli, T. grandiflorum (Willd. ex Spreng.) K. Schum., T. microcarpum Mart., T. bicolor Bonpl. and T. speciosum Willd. ex Spreng analysed. The total polyphenolic content in the seeds as determined by spectrophotometry showed a variation of about forty times. The alive, transparent polyphenolic cells are scattered throughout the cotiledonary mesophyll. However the polyphenolic cells of T. cacao and T. grandiflorum are also aligned perpendicularly with respect to the mesophyll borders and, in addition, both species display polyphenolic cells with a natural translucent purple colour. All the species analysed contained polyphenolic cells scattered throughout the parenchymal cells and also in a lengthwise association with vascular bundles. In T. bicolor and T. speciosum, the species with the lowest polyphenolic contents, these cells were mostly located around the vascular bundles. Using Scanning Electron Microscopy, the polyphenolic cells demonstrated a complex cytoarchitecture, and after fixing with glutaraldhyde, the polyphenolic secretion was shown to remain as a single unit or was organized into round droplets. Transmission Electron Microscopy displayed immature plastids from young mesophyll cells containing eletron-dense deposits similar to phenolic substances, suggesting that Theobroma plastids are involved in the synthesis of phenolics.
Resumo:
In recent times, increased emphasis has been placed on diversifying the types of trees to shade cacao (Theobroma cacao L.) and to achieve additional services. Agroforestry systems that include profitable and native timber trees are a viable alternative but it is necessary to understand the growth characteristics of these species under different environmental conditions. Thus, timber tree species selection should be based on plant responses to biotic and abiotic factors. The aims of this study were (1) to evaluate growth rates and leaf area indices of the four commercial timber species: Cordia thaisiana, Cedrela odorata, Swietenia macrophylla and Tabebuia rosea in conjunction with incidence of insect attacks and (2) to compare growth rates of four Venezuelan Criollo cacao cultivars planted under the shade of these four timber species during the first 36 months after establishment. Parameters monitored in timber trees were: survival rates, growth rates expressed as height and diameter at breast height and leaf area index. In the four Cacao cultivars: height and basal diameter. C. thaisiana and C. odorata had the fastest growth and the highest survival rates. Growth rates of timber trees will depend on their susceptibility to insect attacks as well as to total leaf area. All cacao cultivars showed higher growth rates under the shade of C. odorata. Growth rates of timber trees and cacao cultivars suggest that combinations of cacao and timber trees are a feasible agroforestry strategy in Venezuela.
Resumo:
DNA- and RNA-based polymerase chain reaction (PCR) systems were used with Cacao swollen shoot virus (CSSV) primers designed from conserved regions of the six published genomic sequences of CSSV to investigate whether the virus is transmissible from infected trees through cross-pollination to seeds and seedlings. Pollen was harvested from CSSV infected cocoa trees and used to cross-pollinate flowers of healthy cocoa trees (recipient parents) to generate enough cocoa seeds for the PCR screening. Adequate precautions were taken to avoid cross-contamination during duplicated DNA extractions and only PCR results accompanied by effective positive and negative controls were scored. Results from the PCR analyses showed that samples of cocoa pod husk, mesocarp and seed tissues (testa, cotyledon and embryo) from the cross-pollinations were PCR negative for CSSV DNA. Sequential DNA samples from new leaves of seedlings resulting from the cross-pollinated trees were consistently PCR negative for presence of portions of CSSV DNA for over 36 months after germination. A reverse transcription-PCR analysis performed on the seedlings showed negative results, indicating absence of functional CSSV RNA transcripts in the seedlings. None of the seedlings exhibited symptoms characteristic of the CSSV disease, and all infectivity tests on the seedlings were also negative. Following these results, the study concluded that although CSSV DNA was detected in pollen from CSSV infected trees, there was no evidence of pollen transmission of the virus through cross-pollination from infected cocoa parents to healthy cocoa trees. Keywords:badnavirus;CSSV;PCR;pollen;seed transmission;Theobroma cacao
Resumo:
BACKGROUND: Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao Swollen Shoot Virus (CSSV) the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. RESULTS: Morphologically similar adult females were characterised by scanning electron microscopy and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes including those accessions from distinct geographical regions. This has allowed for the design of a High Resolution Melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. CONCLUSIONS: HRM Analysis (HRMA) readily differentiated between mealybug pests of cacao that can not necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug transmitted diseases.
Resumo:
A recent debate has contrasted two conservation strategies in agricultural landscapes; either ""land sparing`` farm development combining intensive production practices with forest set-asides, or ""wildlife-friendly`` farming with greater on-farm habitat value but lower yields. We argue that in established mosaic landscapes including old cacao production regions where natural forest has already been reduced to relatively small fragments, a combination of both strategies is needed to conserve biodiversity. After reviewing the evidence for the insufficiency of either strategy alone if applied to such landscapes, the paper focuses on the cacao production landscape of southern Bahia, Brazil, once the world`s second largest cacao producer. Here, small remaining areas of Atlantic Forest are embedded in a matrix dominated by traditional cacao agroforests, resulting in a landscape mosaic that has proven favorable to the conservation of the region`s high biodiversity. We show that current land use dynamics and public policies pose threats but also offer opportunities to conservation and describe a three- pronged landscape conservation strategy, consisting of (i) expansion of the protected areas system, (ii) promotion of productive yet biodiversity-friendly cacao farming practices, and (iii) assistance to land users to implement legally mandated on-farm reserves and voluntary private reserves. We discuss recent experiences concerning the implementation of this strategy, discuss likely future scenarios, and reflect on the applicability of the Bahian experience to biodiversity rich cacao production regions elsewhere in the tropics.
Resumo:
Vários trabalhos vem sendo desenvolvidos sobre o cultivo in vitro de cacau (T.cacao), mas são raros para a maioria das outras espécies do gênero, como o cupuaçu (T. grandiflorum), cuja a área plantada vem aumentando expressivamente, e outras que poderiam servir de fonte de genes para as espécies economicamente já reconhecidas. Protocolos para obtenção de embriões somáticos in vitro para as espécies T. cacao,T. grandiflorum,T. speciosum e o híbrido T. grandiflorum x T. obovatum foram avaliados a partir de duas fontes de explantes, estaminódios e pétalas (formadas por lígulas e cógulas) cultivados em meio de crescimento primário de calo, consistindo de sais DKW, suplementado com 20 g l-1 de sacarose, 250 mg l-1de glutamina, 200 mg l-1 de mio-inositol, 0,2 mg l-1 de tiamina-HCl, 0,1 mg l-1 de ácido nicotínico, 0,2 mg l-1 de glicina, 2 mg l-1 de 2,4-D, 2,2 g l-1 de Gelrite® e pH 5,8. A este meio foram adicionadas diferentes concentrações de tidiazuron (0, 5 e 10 µg l-1). As culturas foram mantidas no escuro por 14 dias, à temperatura de 25 ± 2 ºC, e então transferidas para meio de crescimento secundário de calo, constituído de sais WPM, vitaminas de Gamborg, 20 g l-1 de sacarose, 2 mg l-1 de 2,4 D, 0,3 mg l-1 de cinetina, 50 ml l-1 de água de côco, 2,2 g l-1 de Gelrite® e pH 5,8. A formação de calos ocorreu em todas as espécies. Embriões somáticos foram obtidos somente para T. cacao. A calogênese mostrou-se influenciada pelo genótipo e foi maior nos estaminódios.
Resumo:
Resistance of progenies of cacao to Ceratocystis wilt Seedlings from open-pollinated progenies of 20 clones of cocoa (Theobroma cacao) were inoculated with the fungus Ceratocystis cacaofunesta, the causal agent of Ceratocystis wilt, and their response was assessed based on the percentage of dead plants. Open pollinated progeny of clones TSH1188 and VB1151 were used as standards for resistance, while CCN51 and SJ02 for susceptibility. Contrasts between these benchmarks and the progenies studied were estimated and evaluated by Dunnett's t test (alpha = 0.05). The progenies showed different responses to C. cacaofunesta, and it was possible to classify them into three groups: resistant (FCB01, CSG70, BOBA01, VB902, TSH1188, VB1151, PS1319 and MAC01), moderately susceptible (HW25, PM02, FA13, PH15, M05 and BJ11) and susceptible (CCN51, FB206, PH16, SJ02, CCN10 and FSU77).
Resumo:
We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.
Resumo:
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.
Resumo:
The basidiomycete Moniliophthora perniciosa is the causal agent of witches` broom disease of Theobroma cacao (cacao). Pathogenesis mechanisms of this hemibiotrophic fungus are largely unknown. An approach to identify putative pathogenicity genes is searching for sequences induced in mycelia grown under in vitro conditions. Using this approach, genes from M. perniciosa induced under limiting nitrogen and light were identified from a cDNA library enriched by suppression subtractive hybridization as potential putative pathogenicity genes. From the 159 identified unique sequences, 59 were annotated and classified by gene ontology. Two sequences were categorized as ""Defence genes, Virulence, and Cell response"" presumably coding for allergenic proteins, whose homologues from other fungi are inducers of animal or plant defences. Differential gene expression was evaluated by quantitative amplification of reversed transcripts (RT-qPCR) of the putative identified genes coding for the two allergenic proteins (Aspf13 and 88KD), and for the enzymes Arylsulfatase (AS); Aryl-Alcohol Oxidase; Aldo-Keto Reductase (AK); Cytochrome P450 (P450); Phenylalanine Ammonia-Lyase; and Peroxidase from mycelia grown under contrasting N concentrations. All genes were validated for differential expression, except for the putative Peroxidase. The same eight genes were analysed for expression in susceptible plants inoculated with M. perniciosa, and six were induced during the early asymptomatic stage of the disease. In infected host tissues, transcripts of 88KD and AS were found more abundant at the biotrophic phase, while those from Aspf13, AK, PAL, and P450 accumulated at the necrotrophic phase, enabling to suggest that mycelia transition from biotrophic to necrotrophic might occur earlier than currently considered. These sequences appeared to be virulence life-style genes, which encode factors or enzymes that enable invasion, colonization or intracellular survival, or manipulate host factors to benefit the pathogen`s own survival in the hostile environment. (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches` Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109103 base pairs, with 31.9 % GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688. (c) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches` broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.
Resumo:
Os aspectos fisiológicos e bioquímicos influenciados pelo silício e que condicionam reações de resistência a pragas no cacaueiro ainda são pouco conhecidos. O objetivo deste experimento foi avaliar os efeitos da aplicação de silício sobre a fotossíntese, sobre o teor foliar de fenóis solúveis totais e a sua influência na preferência de Toxoptera aurantii em genótipos de cacau. O experimento foi conduzido em casa de vegetação, no delineamento de blocos casualizados, com quatro repetições, em arranjo fatorial 3 x 3, constituído por três genótipos (TSH 1188, CCN 51 e Catongo), duas doses de silicato de potássio (3 e 6 mL L-1), aplicadas por via foliar e um controle pulverizado somente com água. Foram realizadas avaliações das trocas gasosas, da fluorescência da clorofila a e do teor de compostos fenólicos foliar, além de um teste de preferência com chance de livre escolha com T. aurantii. Os genótipos TSH 1188 e CCN 51 apresentam maior eficiência fotoquímica e fotossintética, comparados com o Catongo. Independentemente do genótipo, a aplicação de silicato de potássio não alterou o índice de desempenho das plantas (PI ABS e PI TOTAL); no entanto, a dose 3 mL L-1 aumentou a fotossíntese líquida e o teor de fenóis solúveis totais. A dose 6 mL L-1 reduziu a preferência de T. aurantii pelas folhas do genótipo TSH 1188. A aplicação de silicato de potássio é promissora no aumento da resistência do cacaueiro a T. aurantii.
Resumo:
The objective of the present work was to evaluate 27 progenies of cocoa crosses considering the agronomic traits and select F1 plants within superior crosses. The experiment was installed in March 2005, in the Experimental Station Joaquim Bahiana (ESJOB), in Itajuipe, Bahia. The area of the experiment is of approximately 3 ha, with a total of 3240 plants. Thirteen evaluations of vegetative brooms, five of cushion brooms and 15 of number of pods per plant were accomplished. Thirty pollinations were made for each selected plant to test for self-compatibility. The production, based on the number of pods per plant, and resistance to witches´ broom indicated CEPEC 94 x CCN 10, RB 39 x CCN 51 and CCN 10 x VB 1151 as superior progenies. All selections tested were self-compatible. The analyses of progenies and individual tree data, associated to visual field observations, allowed the selection of 17 plants which were included in a network of regional tests to determine the phenotypic stability.
Resumo:
Foram determinados diversos parâmetros da biologia de Conotrachelus hutneropictus Fiedler, importante praga do cacaueiro, Theobroma cacao L. e do cupuaçuzeiro, T. grandiflorum (Will, ex Spreng.) Schum na Amazônia brasileira. A pesquisa foi realizada em laboratório, com fotofase natural de 12 horas, sob condições controladas de temperatura (27 ± 2eC) e umidade relativa (80 ± 10%). C. hutneropictus alimentado com folhas novas e frutos novos de cacueiros, apresentou em média, um ciclo de ovo a emergência do adulto do solo de 79 a 151 dias e em média, 108,80 ± 9,44 dias (Χ ±Εχ95) para machos e 156,87 ±16,19 dias para fêmeas. O período de pré-oviposição foi de 16,20 ± 0,49 dias. O periodo de oviposição foi de 80,50 ± 5,58 dias, colocando cada fêmea, de 55 a 153 ovos, em média 108,45 ± 6,21 ovos, sendo as posturas diárias e constituídas em média por 1,29 ± 0,03 ovos. No interior dos frutos de cacau, o inseto necessitou de 4,73 ± 0,06 dias e 26,64 ±0,17 dias, para o desenvolvimento embrionário e larval, respectivamente. Após esse período, um total de 20,25 ± 1,50 dias se passaram no solo, para o desenvolvimento das fases de pré-pupa (6,07 ± 0,06 dias), pupa (9,62 ±0,10 dias) e completa formação fisiológica do adulto (4,56 ±0,11 dias). Neste interim, C. humeropictus torna-se mais vulnerável ao ataque de seus inimigos naturais, principalmente fungos, dentre os quais Metarhiziutn anisopliae (Metsch.) Sorok. e Beauveria bassiana (Bals.) Vuill., únicos inimigos constatados para a espécie no decorrer da pesquisa.