769 resultados para TCP(transmissioncontrolprotocol)
Resumo:
The best-effort nature of the Internet poses a significant obstacle to the deployment of many applications that require guaranteed bandwidth. In this paper, we present a novel approach that enables two edge/border routers-which we call Internet Traffic Managers (ITM)-to use an adaptive number of TCP connections to set up a tunnel of desirable bandwidth between them. The number of TCP connections that comprise this tunnel is elastic in the sense that it increases/decreases in tandem with competing cross traffic to maintain a target bandwidth. An origin ITM would then schedule incoming packets from an application requiring guaranteed bandwidth over that elastic tunnel. Unlike many proposed solutions that aim to deliver soft QoS guarantees, our elastic-tunnel approach does not require any support from core routers (as with IntServ and DiffServ); it is scalable in the sense that core routers do not have to maintain per-flow state (as with IntServ); and it is readily deployable within a single ISP or across multiple ISPs. To evaluate our approach, we develop a flow-level control-theoretic model to study the transient behavior of established elastic TCP-based tunnels. The model captures the effect of cross-traffic connections on our bandwidth allocation policies. Through extensive simulations, we confirm the effectiveness of our approach in providing soft bandwidth guarantees. We also outline our kernel-level ITM prototype implementation.
Resumo:
TCP performance degrades when end-to-end connections extend over wireless connections-links which are characterized by high bit error rate and intermittent connectivity. Such link characteristics can significantly degrade TCP performance as the TCP sender assumes wireless losses to be congestion losses resulting in unnecessary congestion control actions. Link errors can be reduced by increasing transmission power, code redundancy (FEC) or number of retransmissions (ARQ). But increasing power costs resources, increasing code redundancy reduces available channel bandwidth and increasing persistency increases end-to-end delay. The paper proposes a TCP optimization through proper tuning of power management, FEC and ARQ in wireless environments (WLAN and WWAN). In particular, we conduct analytical and numerical analysis taking into "wireless-aware" TCP) performance under different settings. Our results show that increasing power, redundancy and/or retransmission levels always improves TCP performance by reducing link-layer losses. However, such improvements are often associated with cost and arbitrary improvement cannot be realized without paying a lot in return. It is therefore important to consider some kind of net utility function that should be optimized, thus maximizing throughput at the least possible cost.
Resumo:
(This Technical Report revises TR-BUCS-2003-011) The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. In this paper, we investigate a Bayesian approach to infer at the source host the reason of a packet loss, whether congestion or wireless transmission error. Our approach is "mostly" end-to-end since it requires only one long-term average quantity (namely, long-term average packet loss probability over the wireless segment) that may be best obtained with help from the network (e.g. wireless access agent).Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a classifier of the type of packet loss. We study the effectiveness of short-term classification of packet errors (congestion vs. wireless), given stationary prior error probabilities and distributions of packet delays conditioned on the type of packet loss (measured over a larger time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient online error classifier can be built. We introduce a simple queueing model to underline the conditional delay distributions arising from different kinds of packet losses over a heterogeneous wired/wireless path. We show how Hidden Markov Models (HMMs) can be used by a TCP connection to infer efficiently conditional delay distributions. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect classification.
Resumo:
One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.
Resumo:
The popularity of TCP/IP coupled with the premise of high speed communication using Asynchronous Transfer Mode (ATM) technology have prompted the network research community to propose a number of techniques to adapt TCP/IP to ATM network environments. ATM offers Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) services for best-effort traffic, such as conventional file transfer. However, recent studies have shown that TCP/IP, when implemented using ABR or UBR, leads to serious performance degradations, especially when the utilization of network resources (such as switch buffers) is high. Proposed techniques-switch-level enhancements, for example-that attempt to patch up TCP/IP over ATMs have had limited success in alleviating this problem. The major reason for TCP/IP's poor performance over ATMs has been consistently attributed to packet fragmentation, which is the result of ATM's 53-byte cell-oriented switching architecture. In this paper, we present a new transport protocol, TCP Boston, that turns ATM's 53-byte cell-oriented switching architecture into an advantage for TCP/IP. At the core of TCP Boston is the Adaptive Information Dispersal Algorithm (AIDA), an efficient encoding technique that allows for dynamic redundancy control. AIDA makes TCP/IP's performance less sensitive to cell losses, thus ensuring a graceful degradation of TCP/IP's performance when faced with congested resources. In this paper, we introduce AIDA and overview the main features of TCP Boston. We present detailed simulation results that show the superiority of our protocol when compared to other adaptations of TCP/IP over ATMs. In particular, we show that TCP Boston improves TCP/IP's performance over ATMs for both network-centric metrics (e.g., effective throughput) and application-centric metrics (e.g., response time).
Resumo:
While ATM bandwidth-reservation techniques are able to offer the guarantees necessary for the delivery of real-time streams in many applications (e.g. live audio and video), they suffer from many disadvantages that make them inattractive (or impractical) for many others. These limitations coupled with the flexibility and popularity of TCP/IP as a best-effort transport protocol have prompted the network research community to propose and implement a number of techniques that adapt TCP/IP to the Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) services in ATM network environments. This allows these environments to smoothly integrate (and make use of) currently available TCP-based applications and services without much (if any) modifications. However, recent studies have shown that TCP/IP, when implemented over ATM networks, is susceptible to serious performance limitations. In a recently completed study, we have unveiled a new transport protocol, TCP Boston, that turns ATM's 53-byte cell-oriented switching architecture into an advantage for TCP/IP. In this paper, we demonstrate the real-time features of TCP Boston that allow communication bandwidth to be traded off for timeliness. We start with an overview of the protocol. Next, we analytically characterize the dynamic redundancy control features of TCP Boston. Next, We present detailed simulation results that show the superiority of our protocol when compared to other adaptations of TCP/IP over ATMs. In particular, we show that TCP Boston improves TCP/IP's performance over ATMs for both network-centric metrics (e.g., effective throughput and percent of missed deadlines) and real-time application-centric metrics (e.g., response time and jitter).
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in flexible congestion control mechanisms. Window-based congestion control schemes use increase rules to probe available bandwidth, and decrease rules to back off when congestion is detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and packet loss rate. In this paper, we propose a novel window-based congestion control algorithm called SIMD (Square-Increase/Multiplicative-Decrease). Contrary to previous memory-less controls, SIMD utilizes history information in its control rules. It uses multiplicative decrease but the increase in window size is in proportion to the square of the time elapsed since the detection of the last loss event. Thus, SIMD can efficiently probe available bandwidth. Nevertheless, SIMD is TCP-friendly as well as TCP-compatible under RED, and it has much better convergence behavior than TCP-friendly AIMD and binomial algorithms proposed recently.
Resumo:
The congestion control mechanisms of TCP make it vulnerable in an environment where flows with different congestion-sensitivity compete for scarce resources. With the increasing amount of unresponsive UDP traffic in today's Internet, new mechanisms are needed to enforce fairness in the core of the network. We propose a scalable Diffserv-like architecture, where flows with different characteristics are classified into separate service queues at the routers. Such class-based isolation provides protection so that flows with different characteristics do not negatively impact one another. In this study, we examine different aspects of UDP and TCP interaction and possible gains from segregating UDP and TCP into different classes. We also investigate the utility of further segregating TCP flows into two classes, which are class of short and class of long flows. Results are obtained analytically for both Tail-drop and Random Early Drop (RED) routers. Class-based isolation have the following salient features: (1) better fairness, (2) improved predictability for all kinds of flows, (3) lower transmission delay for delay-sensitive flows, and (4) better control over Quality of Service (QoS) of a particular traffic type.
Resumo:
We discuss the design principles of TCP within the context of heterogeneous wired/wireless networks and mobile networking. We identify three shortcomings in TCP's behavior: (i) the protocol's error detection mechanism, which does not distinguish different types of errors and thus does not suffice for heterogeneous wired/wireless environments, (ii) the error recovery, which is not responsive to the distinctive characteristics of wireless networks such as transient or burst errors due to handoffs and fading channels, and (iii) the protocol strategy, which does not control the tradeoff between performance measures such as goodput and energy consumption, and often entails a wasteful effort of retransmission and energy expenditure. We discuss a solution-framework based on selected research proposals and the associated evaluation criteria for the suggested modifications. We highlight an important angle that did not attract the required attention so far: the need for new performance metrics, appropriate for evaluating the impact of protocol strategies on battery-powered devices.
Resumo:
Long-range dependence has been observed in many recent Internet traffic measurements. In addition, some recent studies have shown that under certain network conditions, TCP itself can produce traffic that exhibits dependence over limited timescales, even in the absence of higher-level variability. In this paper, we use a simple Markovian model to argue that when the loss rate is relatively high, TCP's adaptive congestion control mechanism indeed generates traffic with OFF periods exhibiting power-law shape over several timescales and thus introduces pseudo-long-range dependence into the overall traffic. Moreover, we observe that more variable initial retransmission timeout values for different packets introduces more variable packet inter-arrival times, which increases the burstiness of the overall traffic. We can thus explain why a single TCP connection can produce a time-series that can be misidentified as self-similar using standard tests.
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. In this paper, we define a new spectrum of window-based congestion control algorithms that are TCP-friendly as well as TCP-compatible under RED. Contrary to previous memory-less controls, our algorithms utilize history information in their control rules. Our proposed algorithms have two salient features: (1) They enable a wider region of TCP-friendliness, and thus more flexibility in trading off among smoothness, aggressiveness, and responsiveness; and (2) they ensure a faster convergence to fairness under a wide range of system conditions. We demonstrate analytically and through extensive ns simulations the steady-state and transient behaviors of several instances of this new spectrum of algorithms. In particular, SIMD is one instance in which the congestion window is increased super-linearly with time since the detection of the last loss. Compared to recently proposed TCP-friendly AIMD and binomial algorithms, we demonstrate the superiority of SIMD in: (1) adapting to sudden increases in available bandwidth, while maintaining competitive smoothness and responsiveness; and (2) rapidly converging to fairness and efficiency.
Resumo:
The current congestion-oriented design of TCP hinders its ability to perform well in hybrid wireless/wired networks. We propose a new improvement on TCP NewReno (NewReno-FF) using a new loss labeling technique to discriminate wireless from congestion losses. The proposed technique is based on the estimation of average and variance of the round trip time using a filter cal led Flip Flop filter that is augmented with history information. We show the comparative performance of TCP NewReno, NewReno-FF, and TCP Westwood through extensive simulations. We study the fundamental gains and limits using TCP NewReno with varying Loss Labeling accuracy (NewReno-LL) as a benchmark. Lastly our investigation opens up important research directions. First, there is a need for a finer grained classification of losses (even within congestion and wireless losses) for TCP in heterogeneous networks. Second, it is essential to develop an appropriate control strategy for recovery after the correct classification of a packet loss.
Resumo:
The increasing diversity of Internet application requirements has spurred recent interest in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The control rules are parameterized so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. This paper presents a comprehensive study of a new spectrum of window-based congestion controls, which are TCP-friendly as well as TCP-compatible under RED. Our controls utilize history information in their control rules. By doing so, they improve the transient behavior, compared to recently proposed slowly-responsive congestion controls such as general AIMD and binomial controls. Our controls can achieve better tradeoffs among smoothness, aggressiveness, and responsiveness, and they can achieve faster convergence. We demonstrate analytically and through extensive ns simulations the steady-state and transient behavior of several instances of this new spectrum.
Resumo:
Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have a significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler in a commercial CDMA2000 network and its impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, we empirically demonstrate the impact of the wireless scheduler on various TCP parameters such as the round trip time, throughput and packet loss rate.